Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun;95(6-1):063302.
doi: 10.1103/PhysRevE.95.063302. Epub 2017 Jun 8.

Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions

Affiliations

Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions

Philippe Angot et al. Phys Rev E. 2017 Jun.

Abstract

We develop asymptotic modeling for two- or three-dimensional viscous fluid flow and convective transfer at the interface between a fluid and a porous layer. The asymptotic model is based on the fact that the thickness d of the interfacial transition region Ω_{fp} of the one-domain representation is very small compared to the macroscopic length scale L. The analysis leads to an equivalent two-domain representation where transport phenomena in the transition layer of the one-domain approach are represented by algebraic jump boundary conditions at a fictive dividing interface Σ between the homogeneous fluid and porous regions. These jump conditions are thus stated up to first-order in O(d/L) with d/L≪1. The originality and relevance of this asymptotic model lies in its general and multidimensional character. Indeed, it is shown that all the jump interface conditions derived for the commonly used 1D-shear flow are recovered by taking the tangential component of the asymptotic model. In that case, the comparison between the present model and the different models available in the literature gives explicit expressions of the effective jump coefficients and their associated scaling. In addition for multi-dimensional flows, the general asymptotic model yields the different components of the jump conditions including a new specific equation for the cross-flow pressure jump on Σ.

PubMed Disclaimer

LinkOut - more resources