Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 May;102(5):1853-67.
doi: 10.1083/jcb.102.5.1853.

Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity

Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity

P J Salas et al. J Cell Biol. 1986 May.

Abstract

We have studied the role of microtubules and actin filaments in the biogenesis of epithelial cell surface polarity, using influenza hemagglutinin and vesicular stomatitis G protein as model apical and basolateral proteins in infected Madin-Darby canine kidney cells. Addition of colchicine or nocodazole to confluent monolayers at concentrations sufficient to completely disassemble microtubules did not affect the asymmetric budding of influenza or vesicular stomatitis virus and only slightly reduced the typical asymmetric surface distribution of their envelope proteins, despite extensive cytoplasmic redistribution of the Golgi apparatus. Alteration of microtubular function by taxol or dissociation of actin filaments by cytochalasin D also failed to have a significant effect. Furthermore, neither colchicine nor cytochalasin D pretreatment blocked the ability of subconfluent Madin-Darby canine kidney cells to sustain polarized budding of influenza virus a few hours after attachment to the substrate. Our results indicate that domain-specific microtubule or actin filament "tracks" are not responsible for the vectorial delivery of apically or basolaterally directed transport vesicles. In conjunction with currently available evidence, they are compatible with a model in which receptors in the cytoplasmic aspect of apical or basolateral regions provide vectoriality to the transport of vesicles carrying plasma membrane proteins to their final surface localization.

PubMed Disclaimer

References

    1. J Cell Biol. 1985 Jan;100(1):333-6 - PubMed
    1. Cell. 1985 Feb;40(2):455-62 - PubMed
    1. J Cell Biol. 1985 Feb;100(2):357-63 - PubMed
    1. Cell. 1985 Aug;42(1):13-21 - PubMed
    1. EMBO J. 1985 Feb;4(2):297-307 - PubMed

Publication types

MeSH terms