Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jun 30:8:423.
doi: 10.3389/fphys.2017.00423. eCollection 2017.

Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis

Affiliations
Review

Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis

David G Behm et al. Front Physiol. .

Abstract

Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics), there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass) and power training programs (e.g., plyometric training) on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with the unilateral landings and propulsions associated with sprinting. Based on this meta-analysis, strength training should be incorporated prior to power training in order to establish an adequate foundation of strength for power training activities.

Keywords: boys; children; girls; plyometric training; resistance training.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flow chart illustrating the different phases of the search and study selection.
Figure 2
Figure 2
Power training effects on jump measures for trained and untrained subjects. Positive SMD values indicate performance changes from pre to post related to training effects, while negative SMDs are indicative of non-effective changes from pre to post. SMD, Standardized mean difference expresses the size of the intervention effect relative to the variability observed in that study. SE, Standard Error. Weight, proportional weight or contribution of each study to the overall analysis.
Figure 3
Figure 3
Power training effects on jump measures for children and adolescents. Positive SMD values indicate performance changes from pre to post related to training effects, while negative SMDs are indicative of non-effective changes from pre to post. SMD, Standardized mean difference expresses the size of the intervention effect relative to the variability observed in that study. SE, Standard Error. Weight, proportional weight or contribution of each study to the overall analysis.
Figure 4
Figure 4
Strength training effects on jump measures for trained and untrained subjects. Positive SMD values indicate performance changes from pre to post related to training effects, while negative SMDs are indicative of non-effective changes from pre to post. SMD, Standardized mean difference expresses the size of the intervention effect relative to the variability observed in that study. SE, Standard Error. Weight, proportional weight or contribution of each study to the overall analysis.
Figure 5
Figure 5
Strength training effects on jump measures for children and adolescents. Positive SMD values indicate performance changes from pre to post related to training effects, while negative SMDs are indicative of non-effective changes from pre to post. SMD, Standardized mean difference expresses the size of the intervention effect relative to the variability observed in that study. SE, Standard Error. Weight, proportional weight or contribution of each study to the overall analysis.
Figure 6
Figure 6
Power training effects on sprint measures for trained and untrained subjects. Positive SMD values indicate performance changes from pre to post related to training effects, while negative SMDs are indicative of non-effective changes from pre to post. SMD, Standardized mean difference expresses the size of the intervention effect relative to the variability observed in that study. SE, Standard Error. Weight, proportional weight or contribution of each study to the overall analysis.
Figure 7
Figure 7
Power training effects on sprint measures for children and adolescents. Positive SMD values indicate performance changes from pre to post related to training effects, while negative SMDs are indicative of non-effective changes from pre to post. SMD, Standardized mean difference expresses the size of the intervention effect relative to the variability observed in that study. SE, Standard Error. Weight, proportional weight or contribution of each study to the overall analysis.
Figure 8
Figure 8
Strength training effects on sprint measures for trained and untrained subjects. Positive SMD values indicate performance changes from pre to post related to training effects, while negative SMDs are indicative of non-effective changes from pre to post. SMD, Standardized mean difference expresses the size of the intervention effect relative to the variability observed in that study. SE, Standard Error. Weight, proportional weight or contribution of each study to the overall analysis.
Figure 9
Figure 9
Strength training effects on sprint performance for children and adolescents. Positive SMD values indicate performance changes from pre to post related to training effects, while negative SMDs are indicative of non-effective changes from pre to post. SMD, Standardized mean difference expresses the size of the intervention effect relative to the variability observed in that study. SE, Standard Error. Weight, proportional weight or contribution of each study to the overall analysis.
Figure 10
Figure 10
Power training effects on lower body strength for adolescents only. Positive SMD values indicate performance changes from pre to post related to training effects, while negative SMDs are indicative of non-effective changes from pre to post. SMD, Standardized mean difference expresses the size of the intervention effect relative to the variability observed in that study. SE, Standard Error. Weight, proportional weight or contribution of each study to the overall analysis.
Figure 11
Figure 11
Strength training effects on lower body strength for trained and untrained subjects. Positive SMD values indicate performance changes from pre to post related to training effects, while negative SMDs are indicative of non-effective changes from pre to post. SMD, Standardized mean difference expresses the size of the intervention effect relative to the variability observed in that study. SE, Standard Error. Weight, proportional weight or contribution of each study to the overall analysis.
Figure 12
Figure 12
Strength training effects on lower body strength for children and adolescents. Positive SMD values indicate performance changes from pre to post related to training effects, while negative SMDs are indicative of non-effective changes from pre to post. SMD, Standardized mean difference expresses the size of the intervention effect relative to the variability observed in that study. SE, Standard Error. Weight, proportional weight or contribution of each study to the overall analysis.

Comment in

References

    1. Aagaard P., Simonsen E. B., Andersen J. L., Magnusson P., Dyhre-Poulsen P. (2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 93, 1318–1326. 10.1152/japplphysiol.00283.2002 - DOI - PubMed
    1. Alves A. R., Marta C. C., Neiva H. P., Izquierdo M., Marques M. C. (2016). Concurrent training in prepubescent children: the effects of 8 weeks of strength and aerobic training on explosive strength and V[Combining Dot Above]O2max. J. Strength Cond. Res. 30, 2019–2032. 10.1519/JSC.0000000000001294 - DOI - PubMed
    1. American College of Sports Medicine (2006). ACSM's Guidelines for Exercise Testing and Prescription. Philadelphia, PA: Lippincott, Williams and Wilkins Publishers.
    1. Anderson K., Behm D. G. (2005). The impact of instability resistance training on balance and stability. Sports Med. 35, 43–53. 10.2165/00007256-200535010-00004 - DOI - PubMed
    1. Arabatzi F. (2016). Adaptations in movement performance after plyometric training on mini-trampoline in children. J. Sports Med. Phys. Fitness [Epub ahead of print]. - PubMed

LinkOut - more resources