Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug 1;6(8):4828-4836.
doi: 10.1039/c5sc01722j. Epub 2015 Jun 2.

Synthesis of triazolium-based mono- and tris-branched [1]rotaxanes using a molecular transporter of dibenzo-24-crown-8

Affiliations

Synthesis of triazolium-based mono- and tris-branched [1]rotaxanes using a molecular transporter of dibenzo-24-crown-8

P Waelès et al. Chem Sci. .

Abstract

We report a diverted route to [1]rotaxane and tris-branched [1]rotaxane that are devoid of any efficient template and which could not be obtained by classical straightforward strategies. The described chemical route relies on the utilization of a "macrocycle transporter", which is able first to bind a macrocycle, second to link temporarily a triazolium-containing molecular axle, and third to deliver the macrocycle around the new docked axle through molecular machinery in a [1]rotaxane structure. The extended encircled thread is eventually cleaved by an amine or a triamine to afford the triazolium-containing [1]rotaxanes, releasing at the same time, the macrocycle transporter as a recyclable species.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Chemical templated routes to [1]rotaxanes.
Fig. 2
Fig. 2. Synthesized [1]rotaxanes 6 and 7 with atom assignments.
Fig. 3
Fig. 3. A novel route to [1]rotaxane F based on a recyclable macrocycle transporter A.
Scheme 1
Scheme 1. Preparation of mono- and tris-branched triazolium-containing [1]rotaxanes using the recyclable macrocycle transporter 1.
Fig. 4
Fig. 4. 1H NMR Spectra (600 MHz, 298 K) of (a) the non-interlocked analogue 4u in CD3CN, (b) the loosened [1]rotaxane 4l in CD3CN, (c) the loosened and tightened [1]rotaxanes 4l and 4t in DMSO-d 6 at t = 20 h, (d) the [1]rotaxane 4l in DMSO-d 6 at t = 0 h and (e) the non-interlocked analogue 4u in DMSO-d 6. The numbering and colorings correspond to the hydrogen assignments indicated in Scheme 1.
Fig. 5
Fig. 5. 1H NMR Spectra (600 MHz, CD3CN, 298 K) of (a) the non-interlocked analogue 4u, (b) the loosened [1]rotaxane 4l, (c) the N-carbamoylated tightened [1]rotaxane 5 and (d) the non-interlocked analogue 5u. The numbering and colorings correspond to the hydrogen assignments indicated in Scheme 1.
Fig. 6
Fig. 6. 1H NMR Spectra (600 MHz, CD3CN, 298 K) of (a) the non-interlocked analogue 6u and (b) triazolium-containing [1]rotaxane 6. The numbering and colorings correspond to the hydrogen assignments indicated in Fig. 2.
Fig. 7
Fig. 7. 1H NMR Spectra (600 MHz, CD3CN, 298 K) of (a) the non-interlocked analogue 7u and (b) triazolium-containing [1]rotaxane 7. The numbering and colorings correspond to the hydrogen assignments indicated in Fig. 2.

References

    1. van Dongen S. F. M., Cantekin S., Elemans J. A. A. W., Rowan A. E., Nolte R. J. M. Chem. Soc. Rev. 2014;43:99–122. - PubMed
    2. Vickers M. S., Beer P. D. Chem. Soc. Rev. 2007;36:211–225. - PubMed
    3. Kay E. R., Leigh D. A., Zerbetto F. Angew. Chem., Int. Ed. 2007;46:72–191. - PubMed
    4. Stoddart J. F. Angew. Chem., Int. Ed. 2014;53:11102–11104. - PubMed
    5. Sauvage J.-P., Dietrich-Buchecker C. and Rapenne G., in Molecular Catenanes, Rotaxanes and Knots, ed. J.-P. Sauvage and C. Dietrich-Buchecker, Wiley-VCH Weinheim, 1999, ch. 6, pp. 107–139.
    6. Breault G. A., Hunter C. A., Mayers P. C. Tetrahedron. 1999;55:5265–5293.
    7. Barin G., Coskun A., Fouda M. M. G., Stoddart J. F. ChemPlusChem. 2012;77:159–185.
    8. Champin B., Mobian P., Sauvage J.-P. Chem. Soc. Rev. 2007;36:358–366. - PubMed
    9. Stoddart J. F. Chem. Soc. Rev. 2009;38:1802–1820. - PubMed
    10. Sauvage J.-P. Acc. Chem. Res. 1998;31:611–619.
    11. Qu D. H., Tian H. Chem. Sci. 2011;2:1011–1015.
    12. Qu D.-H., Wang Q.-C., Zhang Q.-W., Ma X., Tian H. Chem. Rev. 2015 doi: 10.1021/cr5006342. - DOI - PubMed
    1. Coutrot F., in Advances in Atom and Single Molecule Machines, Single Molecular Machines and Motors, ed. C. Joachim and G. Rapenne, Springer International Publishing, Switzerland, 2015, p. 35.
    1. Hiratani K., Kaneyama M., Nagawa Y., Koyama E., Kanesato M. J. Am. Chem. Soc. 2004;126:13568–13569. - PubMed
    1. Franchi P., Fani P., Mezzina E., Lucarini M. Org. Lett. 2008;10:1901–1904. - PubMed
    2. Zhou Q., Wei P., Zhang Y., Yu Y., Yan X. Org. Lett. 2013;15:5350–5353. - PubMed
    1. Ma X., Wang Q., Tian H. Tetrahedron Lett. 2007;48:7112–7116.
    2. Zhu L., Yan H., Zhao Y. Int. J. Mol. Sci. 2012;13:10132–10142. - PMC - PubMed
    3. Li H., Zhang J.-N., Zhou W., Zhang H., Zhang Q., Qu D.-H., Tian H. Org. Lett. 2013;15:3070–3073. - PubMed
    4. Li H., Li X., Agren H., Qu D.-H. Org. Lett. 2014;16:4940–4943. - PubMed
    5. Ma X., Qu D.-H., Ji F., Wang Q., Zhu L., Xu Y., Tian H. Chem. Commun. 2007:1409–1411. - PubMed
    6. Li H., Zhang H., Zhang Q., Zhang Q.-W., Qu D. Org. Lett. 2012;14:5900–5903. - PubMed

LinkOut - more resources