Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1986 May;250(5 Pt 1):G686-90.
doi: 10.1152/ajpgi.1986.250.5.G686.

Phorbol esters stimulate somatostatin release from cultured cells

Comparative Study

Phorbol esters stimulate somatostatin release from cultured cells

K Sugano et al. Am J Physiol. 1986 May.

Abstract

Recent studies suggest that 12-O-tetradecanoylphorbol 13-acetate (TPA), one of a family of phorbol esters that are known tumor promoters, can activate intracellular Ca2+, phospholipid-dependent protein kinase (protein kinase C) directly. To examine the possible involvement of protein kinase C-mediated mechanisms in regulating gastric somatostatin release, we studied the effects of TPA on isolated enriched canine gastric somatostatin cells in short-term culture. TPA markedly stimulated somatostatin release such that nearly 10% of total cellular content of somatostatin was released into media within 2 h of incubation. Among the phorbol compounds tested, TPA was the most potent, with half-maximum effective dose (ED50) obtained at a dose of 5 X 10(-9) M. Phorbol 12,13-dibutyrate (PDBu) also stimulated somatostatin release but with only 5% of the potency of TPA, whereas phorbol compounds with no biological activity in other systems failed to stimulate somatostatin release. In the absence of extracellular Ca2+, the effects of TPA were significantly attenuated. In contrast, stimulation of somatostatin release by forskolin (10(-4) M) was not affected by Ca2+ deprivation but was potentiated by TPA. No such potentiation was observed when TPA was combined with the Ca2+ ionophore A23187. Carbamylcholine (10(-5) M), which inhibits the stimulatory actions of beta-adrenergic agonists or dibutyryl cyclic adenosine monophosphate on somatostatin cells, also inhibited TPA-induced somatostatin release. These data suggest the presence of dual stimulatory mechanisms for gut somatostatin release, both of which are susceptible to inhibition by muscarinic agonists.

PubMed Disclaimer

Publication types

LinkOut - more resources