Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 1;25(17):4723-4744.
doi: 10.1016/j.bmc.2017.07.015. Epub 2017 Jul 8.

Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of quinazolin-4(3H)-one derivatives as potential PPARγ and SUR agonists

Affiliations

Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of quinazolin-4(3H)-one derivatives as potential PPARγ and SUR agonists

Mohamed K Ibrahim et al. Bioorg Med Chem. .

Abstract

Peroxisome proliferator-activated receptor gamma (PPARγ) and sulfonylurea receptor (SUR) play crucial roles in management of type-2 diabetes mellitus. In this study, a series of novel quinazoline-4(3H)-one-sulfonylurea hybrids were designed and synthesized as dual PPARγ and SUR agonists. The synthesized compounds were evaluated for their in vivo anti-hyperglycemic activities against STZ-induced hyperglycemic rats. Four compounds (19a, 19d, 19f and 25g) demonstrated potent activities with reduction in blood glucose levels of 40.43, 46.42, 41.23 and 42.50 %, respectively. The most active ten compounds were further evaluated in vitro for their PPARγ binding affinities and insulin-secreting abilities. Compounds 19b, 19d, 19f, 25f and 25g exhibited the highest affinities against PPARγ with IC50 values of 0.371, 0.350, 0.369, 0.408 and 0.353µM, respectively. In addition, compounds 19d, 19f, and 25d showed the highest insulin-secreting activities with EC50 values of 0.97, 1.01 and 1.15µM, respectively. Furthermore, molecular docking and pharmacophore generation techniques were carried out to investigate binding patterns and fit values of the designed compounds with PPARγ and SUR, respectively. Also, two QSAR models were generated to explore the structural requirements controlling the different biological activities of the synthesized compounds against PPARγ and SUR.

Keywords: Anti-hyperglycemic; Docking; PPARγ; Pharmacophore; QSAR; Quinazolin-4(3H)-one; Sulfonylurea.

PubMed Disclaimer

MeSH terms

LinkOut - more resources