Essential slow degrees of freedom in protein-surface simulations: A metadynamics investigation
- PMID: 28720500
- DOI: 10.1016/j.bbrc.2017.07.066
Essential slow degrees of freedom in protein-surface simulations: A metadynamics investigation
Abstract
Many proteins exhibit strong binding affinities to surfaces, with binding energies much greater than thermal fluctuations. When modelling these protein-surface systems with classical molecular dynamics (MD) simulations, the large forces that exist at the protein/surface interface generally confine the system to a single free energy minimum. Exploring the full conformational space of the protein, especially finding other stable structures, becomes prohibitively expensive. Coupling MD simulations with metadynamics (enhanced sampling) has fast become a common method for sampling the adsorption of such proteins. In this paper, we compare three different flavors of metadynamics, specifically well-tempered, parallel-bias, and parallel-tempering in the well-tempered ensemble, to exhaustively sample the conformational surface-binding landscape of model peptide GGKGG. We investigate the effect of mobile ions and ion charge, as well as the choice of collective variable (CV), on the binding free energy of the peptide. We make the case for explicitly biasing ions to sample the true binding free energy of biomolecules when the ion concentration is high and the binding free energies of the solute and ions are similar. We also make the case for choosing CVs that apply bias to all atoms of the solute to speed up calculations and obtain the maximum possible amount of information about the system.
Keywords: Adsorption; Metadynamics; Molecular dynamics simulations.
Copyright © 2017 Elsevier Inc. All rights reserved.
Similar articles
-
Exhaustively sampling peptide adsorption with metadynamics.Langmuir. 2013 Jun 25;29(25):7999-8009. doi: 10.1021/la4010664. Epub 2013 Jun 13. Langmuir. 2013. PMID: 23706011
-
Boosting the conformational sampling by combining replica exchange with solute tempering and well-sliced metadynamics.J Comput Chem. 2021 Dec 5;42(31):2233-2240. doi: 10.1002/jcc.26752. Epub 2021 Sep 29. J Comput Chem. 2021. PMID: 34585768
-
Metadynamics Enhanced Markov Modeling of Protein Dynamics.J Phys Chem B. 2018 May 31;122(21):5508-5514. doi: 10.1021/acs.jpcb.7b11800. Epub 2018 Jan 27. J Phys Chem B. 2018. PMID: 29338243
-
Taming Rugged Free Energy Landscapes Using an Average Force.Acc Chem Res. 2019 Nov 19;52(11):3254-3264. doi: 10.1021/acs.accounts.9b00473. Epub 2019 Nov 4. Acc Chem Res. 2019. PMID: 31680510 Review.
-
Computational studies of transport in ion channels using metadynamics.Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1733-40. doi: 10.1016/j.bbamem.2016.02.015. Epub 2016 Feb 15. Biochim Biophys Acta. 2016. PMID: 26891818 Review.
Cited by
-
Ligand binding free-energy calculations with funnel metadynamics.Nat Protoc. 2020 Sep;15(9):2837-2866. doi: 10.1038/s41596-020-0342-4. Epub 2020 Aug 19. Nat Protoc. 2020. PMID: 32814837
-
Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution.Proc Natl Acad Sci U S A. 2021 Jan 5;118(1):e2020205118. doi: 10.1073/pnas.2020205118. Proc Natl Acad Sci U S A. 2021. PMID: 33372161 Free PMC article.
-
Molecular Modeling for Nanomaterial-Biology Interactions: Opportunities, Challenges, and Perspectives.Front Bioeng Biotechnol. 2019 Oct 17;7:268. doi: 10.3389/fbioe.2019.00268. eCollection 2019. Front Bioeng Biotechnol. 2019. PMID: 31681746 Free PMC article. Review.
-
Automating the Analysis of Substrate Reactivity through Environment Interaction Mapping.J Chem Inf Model. 2025 Jun 9;65(11):5395-5410. doi: 10.1021/acs.jcim.5c00474. Epub 2025 May 28. J Chem Inf Model. 2025. PMID: 40437800 Free PMC article.
-
Accelerating Solvent Dynamics with Replica Exchange for Improved Free Energy Sampling.J Chem Theory Comput. 2023 Nov 14;19(21):7527-7532. doi: 10.1021/acs.jctc.3c00786. Epub 2023 Oct 21. J Chem Theory Comput. 2023. PMID: 37864561 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources