Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2016 Jul 6:2:16010.
doi: 10.1038/npjbiofilms.2016.10. eCollection 2016.

Piggyback-the-Winner in host-associated microbial communities

Affiliations
Editorial

Piggyback-the-Winner in host-associated microbial communities

Cynthia B Silveira et al. NPJ Biofilms Microbiomes. .

Abstract

Phages can exploit their bacterial hosts by lytic infection, when many viral particles are released at cell lysis, or by lysogeny, when phages integrate into the host's genome. We recently proposed a new dynamic model of bacteria-phage interactions in which lysogeny predominates at high microbial abundance and growth rates. This model, named Piggyback-the-Winner (PtW), contrasts to current accepted models on the frequency of lysis and lysogeny and predicts that phages integrate into their hosts' genomes as prophages when microbial abundances and growth rates are high. According to PtW, switching to the temperate life cycle reduces phage predation control on bacterial abundance and confers superinfection exclusion, preventing that a closely-related phage infects the same bacterial cell. Here we examine how PtW is important for metazoans. Specifically, we postulate that PtW and the recently described bacteriophage adherence to mucus (BAM) model are strongly interrelated and have an important role in the development of the microbiome. In BAM, phage produced by the microbiome attach to mucins and protect underlying epithelial cells from invading bacteria. Spatial structuring of the mucus creates a gradient of phage replication strategies consistent with PtW. We predict that lysogeny is favored at the top mucosal layer and lytic predation predominates in the bacteria-sparse intermediary layers. The lysogeny confers competitive advantage to commensals against niche invasion and the lytic infection eliminates potential pathogens from deeper mucus layers.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Spatially structured lytic to lysogenic switches in microbial communities associated to metazoan mucosal surfaces. The bottom nucleated cell layer represents the metazoan host epithelium. A mucin concentration gradient is formed from the epithelium to the top. Commensal bacteria abundance (blue flagellated cells) is higher at the top layer where mucin concentration is low, whereas phage abundance is higher at intermediate layers as a result to direct adherence to mucus. High bacterial abundance and growth at the top layers favours lysogeny, while lysis is favoured at the intermediate layer. An invading pathogen (red flagellated cell) encounter two steps of phage-mediated immunity: (1) competition with commensal lysogens displaying high fitness resulting from the integrated phage genome; (2) lytic infection at intermediate layers. An invasive lysogen containing a prophage that confers high fitness gain could outcompete commensals and scape lytic infection by maintaining high growth rates, leading to the establishment of infection.

References

    1. Thingstad, T. F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45, 1320–1328 (2000).
    1. Obeng N., Pratama A. A. & van Elsas J. D. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 24: 440–449. (2016). - PubMed
    1. Rohwer, F. & Thurber, R. V. Viruses manipulate the marine environment. Nature 459, 207–212 (2009). - PubMed
    1. Paul, J. H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2, 579–589 (2008). - PubMed
    1. Paul, J. H. & Jiang, S. C. Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar. Ecol. Prog. Ser. 142, 27–38 (1996).

Publication types

LinkOut - more resources