Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 10:1:15005.
doi: 10.1038/npjbcancer.2015.5. eCollection 2015.

Somatic mutations in leukocytes infiltrating primary breast cancers

Affiliations

Somatic mutations in leukocytes infiltrating primary breast cancers

Maria Kleppe et al. NPJ Breast Cancer. .

Abstract

Background: Malignant transformation requires the interaction of cancer cells with their microenvironment, including infiltrating leukocytes. However, somatic mutational studies have focused on alterations in cancer cells, assuming that the microenvironment is genetically normal. Because we hypothesized that this might not be a valid assumption, we performed exome sequencing and targeted sequencing to investigate for the presence of pathogenic mutations in tumor-associated leukocytes in breast cancers.

Methods: We used targeted sequencing and exome sequencing to evaluate the presence of mutations in sorted tumor-infiltrating CD45-positive cells from primary untreated breast cancers. We used high-depth sequencing to determine the presence/absence of the mutations we identified in breast cancer-infiltrating leukocytes in purified tumor cells and in circulating blood cells.

Results: Capture-based sequencing of 15 paired tumor-infiltrating leukocytes and matched germline DNA identified variants in known cancer genes in all 15 primary breast cancer patients in our cohort. We validated the presence of mutations identified by targeted sequencing in infiltrating leukocytes through orthogonal exome sequencing. Ten patients harbored alterations previously reported as somatically acquired variants, including in known leukemia genes (DNTM3A, TET2, and BCOR). One of the mutations observed in the tumor-infiltrating leukocytes was also detected in the circulating leukocytes of the same patients at a lower allele frequency than observed in the tumor-infiltrating cells.

Conclusions: Here we show that somatic mutations, including mutations in known cancer genes, are present in the leukocytes infiltrating a subset of primary breast cancers. This observation allows for the possibility that the cancer cells interact with mutant infiltrating leukocytes, which has many potential clinical implications.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Sequencing analysis of 15 primary breast cancers identified somatically acquired mutations in tumor-infiltrating leukocytes. (a) Gating scheme for fluorescent-activated cell sorting of CD45-positive hematopoietic cells. DAPI was included as live-dead stain. Cell doublets were excluded prior to gating on APC-Cy7 (not shown). DNA extracted from the CD45-positive fraction was analyzed using three independent sequencing platforms. (b) Representative integrated genomics viewer image showing the presence of acquired mutations. Reads that do not match the reference nucleotide are colored. Gray bar chart on top displays the read depth. Reference nucleotide and protein sequence are depicted for each mutation. Variant allele frequency (VAF) and the number of altered and total reads are shown (alt|total, VAF). DAPI, 4′,6-diamidino-2-phenylindole; GFP, green fluorescent protein.

References

    1. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70. - PMC - PubMed
    1. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 2012; 486: 353–360. - PMC - PubMed
    1. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 2012; 150: 165–178. - PMC - PubMed
    1. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557–563. - PubMed
    1. Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 2002; 32: 355–357. - PubMed