Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep;97(3):815-818.
doi: 10.4269/ajtmh.17-0022. Epub 2017 Jul 19.

Antibiotic Resistance in Young Children in Kilosa District, Tanzania 4 Years after Mass Distribution of Azithromycin for Trachoma Control

Affiliations

Antibiotic Resistance in Young Children in Kilosa District, Tanzania 4 Years after Mass Distribution of Azithromycin for Trachoma Control

Evan M Bloch et al. Am J Trop Med Hyg. 2017 Sep.

Abstract

Mass administration of azithromycin (MDA) is integral to trachoma control. Recent studies suggest that MDA may increase drug-resistant pathogens, yet findings from prior studies suggest little long-term impact on resistance. This disparity may be linked to differences in pre-MDA community-level resistance patterns. We describe carriage prevalence and antibiotic resistance patterns for Streptococcus pneumoniae (Spn) (nasopharyngeal swab collection), Staphylococcus aureus (SA) (nasopharyngeal swabs), and Escherichia coli (EC) (rectal swabs) in 1,047 children ages 1-59 months in a district with MDA cessation 4 years ago. Antibiotic susceptibility was evaluated by disk diffusion and Etest. The carriage rates for Spn, SA, and EC were 43.5% (455/1,047), 13.2% (138/1,047), and 61.7% (646/1,047), respectively. Resistance to AZM was observed in 14.3%, 29.0%, and 16.6% of the Spn, SA, and EC isolates, respectively. Spn resistance was variable (0-67%) by hamlet. Future analyses will assess the influence of pre-MDA antibiotic resistance patterns on those observed following MDA.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Quantification of Streptococcus Pneumonia resistance to AZM by community. This figure appears in color at www.ajtmh.org.

References

    1. Gray GC, McPhate DC, Leinonen M, Cassell GH, Deperalta EP, Putnam SD, Karcher JA, Sawyer MH, Laurila A, Connor JD, 1998. Weekly oral azithromycin as prophylaxis for agents causing acute respiratory disease. Clin Infect Dis 26: 103–110. - PubMed
    1. Fry AM, Jha HC, Lietman TM, Chaudhary JS, Bhatta RC, Elliott J, Hyde T, Schuchat A, Gaynor B, Dowell SF, 2002. Adverse and beneficial secondary effects of mass treatment with azithromycin to eliminate blindness due to trachoma in Nepal. Clin Infect Dis 35: 395–402. - PubMed
    1. Coles CL, Levens J, Seidman JC, Mkocha H, Munoz B, West S, 2012. Mass distribution of azithromycin for trachoma control is associated with short-term reduction in risk of acute lower respiratory infection in young children. Pediatr Infect Dis J 31: 341–346. - PubMed
    1. Haug S, et al. , 2010. The decline of pneumococcal resistance after cessation of mass antibiotic distributions for trachoma. Clin Infect Dis 51: 571–574. - PubMed
    1. Coles CL, Mabula K, Seidman JC, Levens J, Mkocha H, Munoz B, Mfinanga SG, West S, 2013. Mass distribution of azithromycin for trachoma control is associated with increased risk of azithromycin-resistant Streptococcus pneumoniae carriage in young children 6 months after treatment. Clin Infect Dis 56: 1519–1526. - PubMed