Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 9;9(31):25775-25788.
doi: 10.1021/acsami.7b06553. Epub 2017 Jul 27.

Doxorubicin Intracellular Remote Release from Biocompatible Oligo(ethylene glycol) Methyl Ether Methacrylate-Based Magnetic Nanogels Triggered by Magnetic Hyperthermia

Affiliations

Doxorubicin Intracellular Remote Release from Biocompatible Oligo(ethylene glycol) Methyl Ether Methacrylate-Based Magnetic Nanogels Triggered by Magnetic Hyperthermia

Esther Cazares-Cortes et al. ACS Appl Mater Interfaces. .

Abstract

Hybrid nanogels, composed of thermoresponsive polymers and superparamagnetic nanoparticles, are attractive nanocarriers for biomedical applications, being able-as a polymer matrix-to uptake and release high quantities of chemotherapeutic agents and-as magnetic nanoparticles-to be heated when exposed to an alternative magnetic field (AMF), better known as magnetic hyperthermia. Herein, biocompatible, pH-responsive, magnetoresponsive, and thermoresponsive nanogels, based on oligo(ethylene glycol) methyl ether methacrylate monomers and a methacrylic acid comonomer were prepared by conventional precipitation radical copolymerization in water, post-assembled by complexation with iron oxide magnetic nanoparticles (MNPs) of maghemite (γ-Fe2O3), and loaded with an anticancer drug (doxorubicin, DOX), for remotely controlled drug release by a "hot spot", as an athermal magnetic hyperthermia strategy against cancer. These nanogels, denoted MagNanoGels, with a hydrodynamic diameter from 328 to 460 nm, as a function of the MNP content, have a swelling-deswelling behavior at their volume phase temperature transition around 47 °C in a physiological medium (pH 7.5), which is above the human body temperature (37 °C). Applying an alternative magnetic field increases the release of DOX by 2-fold, while no macroscopic heating was recorded. This enhanced drug release is due to a shrinking of the polymer network by local heating, as illustrated by the MagNanoGel size decrease under an AMF. In cancer cells, not only do the DOX-MagNanoGels internalize DOX more efficiently than free DOX, but also DOX intracellular release can be remotely triggered under an AMF, in athermal conditions, thus enhancing DOX cytotoxicity.

Keywords: cancer therapy; magnetic hyperthermia; magnetic nanoparticles; oligo(ethylene glycol) methyl ether methacrylate nanogels; remote drug release.

PubMed Disclaimer

LinkOut - more resources