Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jul 21;121(3):293-309.
doi: 10.1161/CIRCRESAHA.117.308428.

Multimodal Regulation of Cardiac Myocyte Proliferation

Affiliations
Free article
Review

Multimodal Regulation of Cardiac Myocyte Proliferation

Xuejun Yuan et al. Circ Res. .
Free article

Abstract

Efficient cardiac regeneration is closely associated with the ability of cardiac myocytes to proliferate. Fetal or neonatal mouse hearts containing proliferating cardiac myocytes regenerate even extensive injuries, whereas adult hearts containing mostly post-mitotic cardiac myocytes have lost this ability. The same correlation is seen in some homoiotherm species such as teleost fish and urodelian amphibians leading to the hypothesis that cardiac myocyte proliferation is a major driver of heart regeneration. Although cardiomyocyte proliferation might not be the only prerequisite to restore full organ function after cardiac damage, induction of cardiac myocyte proliferation is an attractive therapeutic option to cure the injured heart and prevent heart failure. To (re)initiate cardiac myocyte proliferation in adult mammalian hearts, a thorough understanding of the molecular circuitry governing cardiac myocyte cell cycle regulation is required. Here, we review the current knowledge in the field focusing on the withdrawal of cardiac myocytes from the cell cycle during the transition from neonatal to adult stages.

Keywords: cell cycle; epigenomics; genes; myocytes, cardiac; regeneration.

PubMed Disclaimer