Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jan 20:5:5.
doi: 10.1186/s40560-016-0201-0. eCollection 2017.

Tranexamic acid and trauma-induced coagulopathy

Affiliations
Review

Tranexamic acid and trauma-induced coagulopathy

Takeshi Nishida et al. J Intensive Care. .

Abstract

Tranexamic acid (TXA) is a synthetic derivative of the amino acid lysine that inhibits fibrinolysis by blocking the interaction of plasminogen with the lysine residues of fibrin. Historically, TXA is commonly used for reduction of blood loss in perioperative situations, while recently it has attracted attention for clinical use in the trauma field. In 2010, the Clinical Randomization of an Antifibrinolytic in Significant Hemorrhage 2 (CRASH-2) trial demonstrated that intravenous administration of TXA improved mortality significantly in trauma patients with significant bleeding. After the launch of its sensational results, the main stream treatment protocol in trauma changed worldwide to include TXA administration. In this review, first we summarize the recent evidence or recommendations in the related guidelines concerning TXA. Also, we next tried to explore in detail not only the benefits but also the harm introduced by TXA in trauma patients, because the main adverse event results for TXA, such as vascular occlusive events in the CRASH-2 trial, are still being discussed in several papers. Thus, we briefly summarized the evidence for the safety of TXA administration by a systematic review method using observational studies. Consequently, the pooled relative risk for venous thromboembolisms was 1.61 (95% CI, 0.86-3.01), indicating a non-significant increase in the venous thromboembolism risk of TXA therapy. Regarding the basic mechanism, TXA potentially possesses the risk of venous thromboembolisms, so it should be used cautiously and selectively. Further investigation is needed to delineate the optimal targeted trauma patients to earn the maximum survival benefits with minimized risk of thrombotic complications.

Keywords: CRASH-2 trial; Disseminated intravascular coagulopathy; Fibrinolysis; TXA; Transfusion requirements.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Forest plot of the comparison of tranexamic acid (TXA) versus no TXA for venous thromboembolisms in trauma patients. RCTs randomized controlled trials, M-H Mantel–Haenszel, CI confidence interval

References

    1. World Health Organization: The top 10 cause of death. Available at http://www.who.int/mediacentre/factsheets/fs310/en/. Accessed 19 Dec 2016.
    1. Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60:S3–11. doi: 10.1097/01.ta.0000199961.02677.19. - DOI - PubMed
    1. Gruen RL, Jurkovich GJ, McIntyre LK, et al. Patterns of errors contributing to trauma mortality: lessons learned from 2,594 deaths. Ann Surg. 2006;244:371–80. - PMC - PubMed
    1. Okamoto S, Okamoto U. Amino-methyl-cyclohexane-carboxylic acid: AMCHA. A new potent inhibitor of the fibrinolysis. Keio J Med. 1962;11:105–115. doi: 10.2302/kjm.11.105. - DOI
    1. Kobayashi T, Sugiura J. The effect of a new potent antifibrinolytic agent, tranexamic acid. J Jpn Obstet Gynecol Soc. 1966;13:158–167. - PubMed

LinkOut - more resources