Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 15:109:1-12.
doi: 10.1016/j.ejps.2017.07.022. Epub 2017 Jul 20.

Self-assembled polypeptide nanoparticles for intracellular irinotecan delivery

Affiliations

Self-assembled polypeptide nanoparticles for intracellular irinotecan delivery

N N Zashikhina et al. Eur J Pharm Sci. .

Abstract

In this research poly(l-lysine)-b-poly(l-leucine) (PLys-b-PLeu) polymersomes were developed. It was shown that the size of nanoparticles depended on pH of self-assembly process and varied from 180 to 650nm. The biodegradation of PLys-b-PLeu nanoparticles was evaluated using in vitro polypeptide hydrolysis in two model enzymatic systems, as well as in human blood plasma. The experiments on the visualization of cellular uptake of rhodamine 6g-loaded and fluorescein-labeled nanoparticles were carried out and the possibility of their penetration into the cells was approved. The cytotoxicity of polymersomes obtained was tested using three cell lines, namely, HEK, NIH-3T3 and A549. It was shown that tested nanoparticles did not demonstrate any cytotoxicity in the concentrations up to 2mg/mL. The encapsulation of specific to colorectal cancer anti-tumor drug irinotecan into developed nanocontainers was performed by means of pH gradient method. The dispersion of drug-loaded polymersomes in PBS was stable at 4°C for a long time (at least 1month) without considerable drug leakage. The kinetics of drug release was thoroughly studied using two model enzymatic systems, human blood serum and PBS solution. The approximation of irinotecan release profiles with different mathematical drug release models was carried out and allowed identification of the release mechanism, as well as the morphological peculiarities of developed particles. The dependence of encapsulation efficiency, as well as maximal loading capacity, on initial drug concentration was studied. The maximal drug loading was found as 320±55μg/mg of polymersomes. In vitro anti-tumoral activity of irinotecan-loaded polymersomes on a colon cancer cell line (Caco-2) was measured and compared to that for free drug.

Keywords: Amphiphilic block-copolymers; Biodegradation; Cellular uptake; Encapsulation; Irinotecan; Nanoparticles; Polypeptides.

PubMed Disclaimer

MeSH terms

LinkOut - more resources