Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017:1631:23-39.
doi: 10.1007/978-1-4939-7136-7_2.

The Fundamental Role of Reactive Oxygen Species in Plant Stress Response

Affiliations

The Fundamental Role of Reactive Oxygen Species in Plant Stress Response

Michael Liebthal et al. Methods Mol Biol. 2017.

Abstract

Chemical, physical, and biotic factors continuously vary in the natural environment. Such parameters are considered as stressors if the magnitude of their change exceeds the current acclimation norm of the plant. Activation of genetic programs allows for conditional expansion of the acclimation norm and depends on specific sensing mechanisms, intracellular communication, and regulation. The redox and reactive oxygen species (ROS) network plays a fundamental role in directing the acclimation response. These highly reactive compounds like H2O2 are generated and scavenged under normal conditions and participate in realizing a basal acclimation level. Spatial and temporal changes in ROS levels and redox state provide valuable information for regulating epigenetic processes, transcription factors (TF), translation, protein turnover, metabolic pathways, and cross-feed, e.g., into hormone-, NO-, or Ca2+-dependent signaling pathways. At elevated ROS levels uncontrolled oxidation reactions compromise cell functions, impair fitness and yield, and in extreme cases may cause plant death.

Keywords: Abiotic stress; Reactive oxygen species; Redox regulation; Redox signaling.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources