Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Sep;24(3):263-267.
doi: 10.1016/j.tracli.2017.06.030. Epub 2017 Jul 21.

[Immortalization of erythroid progenitors for in vitro large-scale red cell production]

[Article in French]
Affiliations
Review

[Immortalization of erythroid progenitors for in vitro large-scale red cell production]

[Article in French]
A Caulier et al. Transfus Clin Biol. 2017 Sep.

Abstract

Population ageing and increase in cancer incidence may lead to a decreased availability of red blood cell units. Thus, finding an alternative source of red blood cells is a highly relevant challenge. The possibility to reproduce in vitro the human erythropoiesis opens a new era, particularly since the improvement in the culture systems allows to produce erythrocytes from induced-Pluripotent Stem Cells (iPSCs), or CD34+ Hematopoietic Stem Cells (HSCs). iPSCs have the advantage of in vitro self-renewal, but lead to poor amplification and maturation defects (high persistence of nucleated erythroid precursors). Erythroid differentiation from HSC allows a far better amplification and adult-like hemoglobin synthesis. But the inability of these progenitors to self-renew in vitro remains a limit in their use as a source of stem cells. A major improvement would consist in immortalizing these erythroid progenitors so that they could expand indefinitively. Inducible transgenesis is the first way to achieve this goal. To date, the best immortalized-cell models involve strong oncogenes induction, such as c-Myc, Bcl-xL, and mostly E6/E7 HPV16 viral oncoproteins. However, the quality of terminal differentiation of erythroid progenitors generated by these oncogenes is not optimal yet and the long-term stability of such systems is unknown. Moreover, viral transgenesis and inducible expression of oncogenes raise important problems in term of safety, since the enucleation rate is not 100% and no nucleated cells having replicative capacities should be present in the final product.

Keywords: Immortalisation; Red blood cells; Transfusion; Transgenesis; Transgenèse; Érythrocytes.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources