Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 12;13(9):4154-4161.
doi: 10.1021/acs.jctc.7b00431. Epub 2017 Aug 10.

Electronic Coupling for Donor-Bridge-Acceptor Systems with a Bridge-Overlap Approach

Affiliations

Electronic Coupling for Donor-Bridge-Acceptor Systems with a Bridge-Overlap Approach

Alessandro Biancardi et al. J Chem Theory Comput. .

Abstract

Understanding the modulation of the electronic coupling in donor-acceptor systems connected through an aliphatic bridge is crucial from a fundamental point of view as well as for the development of organic electronics. In this work, we present a first-principles approach for the calculation of the electronic coupling (or transfer integrals) in such systems via a block-diagonalization of the Fock/Kohn-Sham matrix of the supersystem, followed by a projection on the basis of the fragment orbitals of the donor and acceptor groups. The strength of the approach is that the bridge is shared by the donor and acceptor blocks in the diagonalization step, so that through-space and through-bond couplings are obtained simultaneously. The method is applied to two test sets: a series of fused-ring bridged systems and G(T)nG DNA oligomers. The results for the first set are compared to experiment and show an average error lower than 10%. For the DNA set, we show that the coupling may be significantly larger (and the decay with length slower) when the entire backbone is included.

PubMed Disclaimer