Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul 20;125(7):077014.
doi: 10.1289/EHP1011.

The Saliva Exposome for Monitoring of Individuals' Health Trajectories

Affiliations

The Saliva Exposome for Monitoring of Individuals' Health Trajectories

Vincent Bessonneau et al. Environ Health Perspect. .

Abstract

Background: There is increasing evidence that environmental, rather than genetic, factors are the major causes of most chronic diseases. By measuring entire classes of chemicals in archived biospecimens, exposome-wide association studies (EWAS) are being conducted to investigate associations between a myriad of exposures received during life and chronic diseases.

Objectives: Because the intraindividual variability in biomarker levels, arising from changes in environmental exposures from conception onwards, leads to attenuation of exposure-disease associations, we posit that saliva can be collected repeatedly in longitudinal studies to reduce exposure-measurement errors in EWAS.

Methods: From the literature and an open-source saliva-metabolome database, we obtained concentrations of 1,233 chemicals that had been detected in saliva. We connected salivary metabolites with human metabolic pathways and PubMed Medical Subject Heading (MeSH) terms, and performed pathway enrichment and pathway topology analyses.

Results: One hundred ninety-six salivary metabolites were mapped into 49 metabolic pathways and connected with human metabolic diseases, central nervous system diseases, and neoplasms. We found that the saliva exposome represents at least 14 metabolic pathways, including amino acid metabolism, TCA cycle, gluconeogenesis, glutathione metabolism, pantothenate and CoA biosynthesis, and butanoate metabolism.

Conclusions: Saliva contains molecular information worthy of interrogation via EWAS. The simplicity of specimen collection suggests that saliva offers a practical alternative to blood for measurements that can be used to characterize individual exposomes. https://doi.org/10.1289/EHP1011.

PubMed Disclaimer

Figures

Pie chart of the distribution of following sources of salivary metabolites: host endogenous: 72 percent; food: 18 percent; microbial endogenous: 4 percent; metals: 3 percent; pollutants: 2 percent; drugs: 1 percent.
Figure 1.
Source category of salivary metabolites compiled from the saliva metabolome database (Dame et al. 2015).
Linkage pathways of salivary metabolites classified by their source, namely, host endogenous, microbial endogenous, metals, food, drugs, and pollutants. Insets A and B are provided as magnified images in the same figure.
Figure 2.
Network of metabolic pathways reconstructed from metabolites detected in human saliva. Gray nodes represent metabolites that had not previously been detected in saliva but have direct neighbors in metabolic pathways. Edges represent biochemical connections between metabolites.
Linkage pathways indicating the MeSH terms for most human chronic diseases associated with salivary metabolites.
Figure 3.
Network of PubMed Medical Subject Headings (MeSH) terms reported associated with salivary metabolites. The size of a node and text reflects the number of metabolites associated with MeSH terms. Edges represent links between MeSH terms.
Linkage pathways indicating the MeSH terms for neoplasms associated with salivary metabolites.
Figure 4.
Subnetwork of neoplasm-related PubMed Medical Subject Headings (MeSH) terms reported associated with salivary metabolites. The size of a node and text reflects the number of metabolites associated with MeSH terms. Edges represent links between MeSH terms.

References

    1. Abraham JE, Maranian MJ, Spiteri I, Russell R, Ingle S, Luccarini C, et al. 2012. Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Med Genomics 5:19, 10.1186/1755-8794-5-19. - DOI - PMC - PubMed
    1. Alvi SN, Al Dgither S, Hammami MM. 2013. Development and validation of LC-MS/MS method for determination of testosterone level in human saliva using lovastatin as internal standard. J Bioequiv Availab 5:228–232.
    1. Aps JK, Martens LC. 2005. Review: the physiology of saliva and transfer of drugs into saliva. Forensic Sci Int 150:119–131, PMID: 15944052, 10.1016/j.forsciint.2004.10.026. - DOI - PubMed
    1. Balbo S, Turesky RJ, Villalta PW. 2014. DNA adductomics. Chem Res Toxicol 27:356–366, PMID: 24437709, 10.1021/tx4004352. - DOI - PMC - PubMed
    1. Bentley MC, Abrar M, Kelk M, Cook J, Phillip K. 1999. Validation of an assay for the determination of cotinine and 3-hydroxycotinine in human saliva using automated solid-phase extraction and liquid-chromatography with tandem mass spectrometric detection. J Chromatogr B Biomed Sci Appl 723:185–194, 10.1016/S0378-4347(98)00494-0. - DOI - PubMed

Publication types

LinkOut - more resources