Strain Balanced AlGaN/GaN/AlGaN nanomembrane HEMTs
- PMID: 28743988
- PMCID: PMC5527108
- DOI: 10.1038/s41598-017-06957-8
Strain Balanced AlGaN/GaN/AlGaN nanomembrane HEMTs
Abstract
Single crystal semiconductor nanomembranes (NM) are important in various applications such as heterogeneous integration and flexible devices. This paper reports the fabrication of AlGaN/GaN NMs and NM high electron mobility transistors (HEMT). Electrochemical etching is used to slice off single-crystalline AlGaN/GaN layers while preserving their microstructural quality. A double heterostructure design with a symmetric strain profile is employed to ensure minimal residual strain in freestanding NMs after release. The mobility of the two-dimensional electron gas (2DEG), formed by the AlGaN/GaN heterostructure, is noticeably superior to previously reported values of many other NMs. AlGaN/GaN nanomembrane HEMTs are fabricated on SiO2 and flexible polymeric substrates. Excellent electrical characteristics, including a high ON/OFF ratio and transconductance, suggest that III-Nitrides nanomembranes are capable of supporting high performance applications.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures
References
-
- Sun Y, Rogers JA. Inorganic Semiconductors for Flexible Electronics. Adv. Mater. 2007;19:1897–1916. doi: 10.1002/adma.200602223. - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
