Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jul 11:4:101.
doi: 10.3389/fmed.2017.00101. eCollection 2017.

Homeostatic Eosinophils: Characteristics and Functions

Affiliations
Review

Homeostatic Eosinophils: Characteristics and Functions

Thomas Marichal et al. Front Med (Lausanne). .

Abstract

Eosinophils are typically considered to be specialized effector cells that are recruited to the tissues as a result of T helper type 2 (Th2) cell responses associated with helminth infections or allergic diseases such as asthma. Once at the site of injury, eosinophils release their cytotoxic granule proteins as well as preformed cytokines and lipid mediators, contributing to parasite destruction but also to exacerbation of inflammation and tissue damage. Accumulating evidence indicates that, besides their roles in Th2 responses, eosinophils also regulate homeostatic processes at steady state, thereby challenging the exclusive paradigm of the eosinophil as a destructive and inflammatory cell. Indeed, under baseline conditions, eosinophils rapidly leave the bloodstream to enter tissues, mainly the gastrointestinal tract, lungs, adipose tissue, thymus, uterus, and mammary glands, where they regulate a variety of important biological functions, such as immunoregulation, control of glucose homeostasis, protection against obesity, regulation of mammary gland development, and preparation of the uterus for pregnancy. This article provides an overview of the characteristics and functions of these homeostatic eosinophils.

Keywords: eosinophils; homeostasis; immunomodulation; innate immunity; mucosae.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic overview of the origin, interleukin (IL)-5 dependence, phenotype, and functions of homeostatic eosinophils (hEos) in mice. hEos are produced in the bone marrow from the EoP precursor independently of IL-5. Conversely, inflammatory eosinophils (iEos) require IL-5 for their production. hEos are uniformly characterized by expression of Siglec-F, F4/80, CD125, and CCR3. hEos transit through the blood circulation to home into tissues at baseline. Blood hEos have a ring-shaped nucleus and express CD62L, while iEos have a segmented nucleus and do not express CD62L but express CD101. hEos homing to the tissues is either dependent (dark red) or independent (white) on IL-5. The IL-5-(in)dependence of thymic and mammary gland hEos remains unknown. Tissue hEos display distinct phenotype, half-life (T1/2), and homeostatic functions. The surface phenotype depicted shows whether hEos express (colored symbols) or do not express (white symbols) the indicated surface markers. When marker expression is undefined, the symbol is not present. The function described in italic has been suggested, but a clear demonstration is still lacking. h, hours.

References

    1. Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol (2006) 24:147–74.10.1146/annurev.immunol.24.021605.090720 - DOI - PubMed
    1. Jacobsen EA, Helmers RA, Lee JJ, Lee NA. The expanding role(s) of eosinophils in health and disease. Blood (2012) 120(19):3882–90.10.1182/blood-2012-06-330845 - DOI - PMC - PubMed
    1. Travers J, Rothenberg ME. Eosinophils in mucosal immune responses. Mucosal Immunol (2015) 8(3):464–75.10.1038/mi.2015.2 - DOI - PMC - PubMed
    1. Kato M, Kephart GM, Talley NJ, Wagner JM, Sarr MG, Bonno M, et al. Eosinophil infiltration and degranulation in normal human tissue. Anat Rec (1998) 252(3):418–25.10.1002/(SICI)1097-0185(199811)252:3<418::AID-AR10>3.0.CO;2-1 - DOI - PubMed
    1. Mishra A, Hogan SP, Lee JJ, Foster PS, Rothenberg ME. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J Clin Invest (1999) 103(12):1719–27.10.1172/JCI6560 - DOI - PMC - PubMed