Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct:185:942-952.
doi: 10.1016/j.chemosphere.2017.07.088. Epub 2017 Jul 19.

Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1

Affiliations

Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1

Asfa Rizvi et al. Chemosphere. 2017 Oct.

Abstract

Rapid industrialization and uncontrolled metal discharge into environment is a global concern for crop production. Metal tolerant bacterium isolated from chilli rhizosphere was identified as Pseudomonas aeruginosa by 16S rDNA sequence analysis. Pseudomonas aeruginosa tolerated high concentrations of Cu (1400 μg ml-1), Cd (1000 μg ml-1) and Cr (1000 μg ml-1). Pseudomonas aeruginosa CPSB1 produced multiple plant growth promoting biomolecules in the presence and absence of metals. Strain CPSB1 solubilized P at 400 μg ml-1 of Cd, Cr and Cu. The strain was positive for indole-3-acetic acid (IAA), siderophores, hydrogen cyanide (HCN), ammonia (NH3) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase when grown with/without metals. The phytotoxic effects on wheat increased with increasing Cd, Cr and Cu rates. The P. aeruginosa CPSB1 inoculated wheat in contrast had better growth and yields under Cu, Cd and Cr stress. The root dry biomass of inoculated plants was enhanced by 44, 28 and 48% at 2007 mg Cu kg-1, 36 mg Cd kg-1 and 204 mg Cr kg-1, respectively. The bioinoculant enhanced number of spikes, grain and straw yields by 25, 17 and 12%, respectively. Pseudomonas aeruginosa CPSB1 significantly declined the levels of catalase (CAT), glutathione reductase (GR) and superoxide dismutase SOD), proline and malondialdehyde (MDA), and reduced metal uptake by wheat. The study demonstrated that P. aeruginosa CPSB1 possessed plant growth promoting potentials, showed metal tolerance capability and had ability to counteract deleterious metal impacts. Due to these, P. aeruginosa CPSB1 could be used as bioinoculant for enhancing wheat production even in metal contaminated soils.

Keywords: Antioxidant enzymes; Bioremediation; Heavy metals; Morphological changes; Pseudomonas aeruginosa; Wheat.

PubMed Disclaimer

LinkOut - more resources