Functional connectivity of the left DLPFC to striatum predicts treatment response of depression to TMS
- PMID: 28747260
- PMCID: PMC5568496
- DOI: 10.1016/j.brs.2017.07.002
Functional connectivity of the left DLPFC to striatum predicts treatment response of depression to TMS
Abstract
Background: Repetitive transcranial magnetic stimulation (TMS) is a non-invasive, safe, and efficacious treatment for depression. TMS has been shown to normalize abnormal functional connectivity of cortico-cortical circuits in depression and baseline functional connectivity of these circuits predicts treatment response. Less is known about the relationship between functional connectivity of frontostriatal circuits and treatment response.
Objective/hypothesis: We investigated whether baseline functional connectivity of distinct frontostriatal circuits predicted response to TMS.
Methods: Resting-state fMRI (rsfMRI) was acquired in 27 currently depressed subjects with treatment resistant depression and 27 healthy controls. Depressed subjects were treated with 5 weeks of daily TMS over the left dorsolateral prefrontal cortex (DLPFC). The functional connectivity between limbic, executive, rostral motor, and caudal motor regions of frontal cortex and their corresponding striatal targets were determined at baseline using an existing atlas based on diffusion tensor imaging. TMS treatment response was measured by percent reduction in the 24-item Hamilton Depression Rating Scale (HAMD24). In an exploratory analysis, correlations were determined between baseline functional connectivity and TMS treatment response.
Results: Seven cortical clusters belonging to the executive and rostral motor frontostriatal projections had reduced functional connectivity in depression compared to healthy controls. No frontostriatal projections showed increased functional connectivity in depression (voxel-wise p < 0.01, family-wise α < 0.01). Only baseline functional connectivity between the left DLPFC and the striatum predicted TMS response. Higher baseline functional connectivity correlated with greater reductions in HAMD24 (Pearson's R = 0.58, p = 0.002).
Conclusion(s): In an exploratory analysis, higher functional connectivity between the left DLPFC and striatum predicted better treatment response. Our findings suggest that the antidepressant mechanism of action of TMS may require connectivity from cortex proximal to the stimulation site to the striatum.
Keywords: Brain stimulation; Frontostriatal; Functional connectivity; TMS; Treatment resistant depression; fMRI.
Copyright © 2017 Elsevier Inc. All rights reserved.
Figures





References
-
- Pascual-Leone A, Rubio B, Pallardó F, Catalá MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. The Lancet. 1996;348:233–37. - PubMed
-
- O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and Safety of Transcranial Magnetic Stimulation in the Acute Treatment of Major Depression: A Multisite Randomized Controlled Trial. Biol Psychiatry. 2007;62:1208–16. doi: 10.1016/j.biopsych.2007.01.018. - DOI - PubMed
-
- George MS, Lisanby SH, Avery D, McDonald WM, Durkalski V, Pavlicova M, et al. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch Gen Psychiatry. 2010;67:507–16. doi: 10.1001/archgenpsychiatry.2010.46. - DOI - PubMed
-
- Rossi S, Hallett M, Rossini PM, Pascual-Leone A Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2009;120:2008–39. doi: 10.1016/j.clinph.2009.08.016. - DOI - PMC - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources