Crystal structure and kinetic analysis of the class B3 di-zinc metallo-β-lactamase LRA-12 from an Alaskan soil metagenome
- PMID: 28750094
- PMCID: PMC5531557
- DOI: 10.1371/journal.pone.0182043
Crystal structure and kinetic analysis of the class B3 di-zinc metallo-β-lactamase LRA-12 from an Alaskan soil metagenome
Abstract
We analyzed the kinetic properties of the metagenomic class B3 β-lactamase LRA-12, and determined its crystallographic structure in order to compare it with prevalent metallo-β-lactamases (MBLs) associated with clinical pathogens. We showed that LRA-12 confers extended-spectrum resistance on E. coli when expressed from recombinant clones, and the MIC values for carbapenems were similar to those observed in enterobacteria expressing plasmid-borne MBLs such as VIM, IMP or NDM. This was in agreement with the strong carbapenemase activity displayed by LRA-12, similar to GOB β-lactamases. Among the chelating agents evaluated, dipicolinic acid inhibited the enzyme more strongly than EDTA, which required pre-incubation with the enzyme to achieve measurable inhibition. Structurally, LRA-12 contains the conserved main structural features of di-zinc class B β-lactamases, and presents unique structural signatures that differentiate this enzyme from others within the family: (i) two loops (α3-β7 and β11-α5) that could influence antibiotic entrance and remodeling of the active site cavity; (ii) a voluminous catalytic cavity probably responsible for the high hydrolytic efficiency of the enzyme; (iii) the absence of disulfide bridges; (iv) a unique Gln116 at metal-binding site 1; (v) a methionine residue at position 221that replaces Cys/Ser found in other B3 β-lactamases in a predominantly hydrophobic environment, likely playing a role in protein stability. The structure of LRA-12 indicates that MBLs exist in wild microbial populations in extreme environments, or environments with low anthropic impact, and under the appropriate antibiotic selective pressure could be captured and disseminated to pathogens.
Conflict of interest statement
Figures





Similar articles
-
Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site.Antimicrob Agents Chemother. 2016 Sep 23;60(10):6013-22. doi: 10.1128/AAC.01067-16. Print 2016 Oct. Antimicrob Agents Chemother. 2016. PMID: 27458232 Free PMC article.
-
Characterization of a highly efficient antibiotic-degrading metallo-β-lactamase obtained from an uncultured member of a permafrost community.Metallomics. 2017 Aug 16;9(8):1157-1168. doi: 10.1039/c7mt00195a. Metallomics. 2017. PMID: 28749495
-
Broad antibiotic resistance profile of the subclass B3 metallo-β-lactamase GOB-1, a di-zinc enzyme.FEBS J. 2011 Apr;278(8):1252-63. doi: 10.1111/j.1742-4658.2011.08046.x. Epub 2011 Mar 4. FEBS J. 2011. PMID: 21299838
-
B1-Metallo-β-Lactamases: Where Do We Stand?Curr Drug Targets. 2016;17(9):1029-50. doi: 10.2174/1389450116666151001105622. Curr Drug Targets. 2016. PMID: 26424398 Free PMC article. Review.
-
[Structure-Function Analysis and Development of Inhibitors of Metallo-β-lactamases Conferring Drug Resistance in Bacteria].Yakugaku Zasshi. 2015;135(11):1299-305. doi: 10.1248/yakushi.15-00211. Yakugaku Zasshi. 2015. PMID: 26521879 Review. Japanese.
Cited by
-
A Novel Cooperative Metallo-β-Lactamase Fold Metallohydrolase from Pathogen Vibrio vulnificus Exhibits β-Lactam Antibiotic-Degrading Activities.Antimicrob Agents Chemother. 2021 Aug 17;65(9):e0032621. doi: 10.1128/AAC.00326-21. Epub 2021 Aug 17. Antimicrob Agents Chemother. 2021. PMID: 34228542 Free PMC article.
-
Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity.Protein Sci. 2020 Mar;29(3):723-743. doi: 10.1002/pro.3804. Epub 2019 Dec 24. Protein Sci. 2020. PMID: 31846104 Free PMC article.
-
Structural Insights for Core Scaffold and Substrate Specificity of B1, B2, and B3 Metallo-β-Lactamases.Front Microbiol. 2022 Jan 13;12:752535. doi: 10.3389/fmicb.2021.752535. eCollection 2021. Front Microbiol. 2022. PMID: 35095785 Free PMC article.
-
Biochemical and genetic characterization of a novel metallo-β-lactamase from marine bacterium Erythrobacter litoralis HTCC 2594.Sci Rep. 2018 Jan 16;8(1):803. doi: 10.1038/s41598-018-19279-0. Sci Rep. 2018. PMID: 29339760 Free PMC article.
-
Strategies to Name Metallo-β-Lactamases and Number Their Amino Acid Residues.Antibiotics (Basel). 2023 Dec 16;12(12):1746. doi: 10.3390/antibiotics12121746. Antibiotics (Basel). 2023. PMID: 38136780 Free PMC article. Review.
References
-
- Khan AU, Nordmann P. Spread of carbapenemase NDM-1 producers: the situation in India and what may be proposed. Scand J Infect Dis. 2012;44(7):531–5. doi: 10.3109/00365548.2012.669046 - DOI - PubMed
-
- Nordmann P, Poirel L, Walsh TR, Livermore DM. The emerging NDM carbapenemases. Trends Microbiol. 2011;19(12):588–95. doi: 10.1016/j.tim.2011.09.005 - DOI - PubMed
-
- da Silva RM, Traebert J, Galato D. Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae: a review of epidemiological and clinical aspects. Expert opinion on biological therapy. 2012;12(6):663–71. doi: 10.1517/14712598.2012.681369 - DOI - PubMed
-
- Canton R, Coque TM. The CTX-M β-lactamase pandemic. Curr Opin Microbiol. 2006;9(5):466–75. doi: 10.1016/j.mib.2006.08.011 - DOI - PubMed
-
- Gutkind GO, Di Conza J, Power P, Radice M. β-Lactamase-mediated resistance: a biochemical, epidemiological and genetic overview. Curr Pharm Des. 2013;19(2):164–208. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous