Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep 15;137(6):1811-5.

Differential sensitivity of T suppressor cell expression to inhibition by histamine type 2 receptor antagonists

  • PMID: 2875110

Differential sensitivity of T suppressor cell expression to inhibition by histamine type 2 receptor antagonists

D E Griswold et al. J Immunol. .

Abstract

The ability of the histamine type 2 (H2) receptor antagonists cimetidine and oxmetidine to inhibit the immune suppression mediated by different types of murine T suppressor cells has been evaluated. Both compounds at doses as low as 1 mg/kg administered as a per os (p.o.) twice a day (b.i.d.) regimen abrogated the expression of dinitrobenzene sulfonic acid-induced, Lyt-2+, T suppressor cells and stimulated contact sensitivity to dinitrofluorobenzene in adoptive transfer experiments. Comparable inhibition of Lyt-1+, T suppressor cell activity induced by UV irradiation required higher doses of cimetidine and oxmetidine (200 and 25 mg/kg; p.o., b.i.d., respectively). In contrast, the T suppressor cell-mediated unresponsiveness induced by inoculation with a high dose of sheep red blood cells was refractory to treatment in vivo with either cimetidine or oxmetidine regardless of the dose. These results indicate that T suppressor cell populations differ markedly in their susceptibility to modulation by H2 antagonists. The histamine type 1 (H1) receptor antagonist diphenhydramine, had no effect on suppressor cell activity in any of these systems, indicating that modulation of suppressor cell activity is mediated through an H2 receptor interaction.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms