Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep;238(3):938-46.

Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs

  • PMID: 2875174

Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs

L D Snell et al. J Pharmacol Exp Ther. 1986 Sep.

Abstract

In the present study, the authors found that, in Mg++-free buffer, N-methyl-D-aspartate (NMDA) was able to evoke the Ca++-dependent and tetrodotoxin-sensitive release of striatal acetylcholine (ACh), presumably via interaction with receptors on cholinergic interneurons. In Mg++-free buffer containing pargyline, NMDA also evoked a Ca++-dependent and tetrodotoxin-sensitive release of striatal [3H]dopamine (DA). Phencyclidine (PCP) and physiological concentrations of Mg++ (1.2 mM) also inhibited ACh release evoked by L-glutamate, L-aspartate and DL-homocysteate, but not ACh release evoked by the glutamate analogs quisqualate and kainate, suggesting that PCP is selective for the magnesium-sensitive, NMDA-preferring glutamate-aspartate receptor subtype. Comparison of PCP inhibition of NMDA-stimulated ACh and DA release with that produced by the competitive NMDA antagonist 2-amino-5-phosphonovalerate indicates that PCP is probably not altering release by a direct action on the NMDA recognition site. The ability of 2-amino-5-phosphonovalerate, but not PCP, to prevent desensitization of NMDA-induced ACh release is consistent with this interpretation. Binding studies did, however, reveal a reduction in the apparent affinity of the PCP binding site by high concentrations of NMDA. This may suggest an allosteric link between the PCP-sigma receptor and the NMDA-type glutamate-aspartate receptor. The receptors mediating excitatory amino acid-induced DA release were somewhat less selective than those on cholinergic neurons in their sensitivity to both Mg++ and PCP. Structure-activity-relationship studies suggested that the inhibition off ACh and DA release evoked by NMDA involves biding to the PCP-sigma receptor.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources