Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb;12(2):e1256-e1267.
doi: 10.1002/term.2529. Epub 2017 Nov 22.

Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering

Affiliations

Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering

Boram Kim et al. J Tissue Eng Regen Med. 2018 Feb.

Abstract

The potential of decellularized cell-derived extracellular matrix (ECM) deposited on biphasic calcium phosphate (BCP) scaffold for bone tissue engineering was investigated. Rat derived bone marrow mesenchymal stem cells were cultured on porous BCP scaffolds for 3 weeks and decellularized with two different methods (freeze-thaw [F/T] or sodium dodecyl sulfate [SDS]). The decellularized ECM deposited scaffolds (dECM-BCP) were characterized through scanning electron microscopy, energy dispersive X-ray spectrometer, and confocal microscopy. The efficiency of decellularization was evaluated by quantifying remaining DNA, sulfated glycosaminoglycans, and collagens. Results revealed that F/T method was more effective procedure for removing cellular components of cultured cells (95.21% DNA reduction) than SDS treatment (92.49%). Although significant loss of collagen was observed after decellularization with both F/T (56.68%) and SDS (70.87%) methods, F/T treated sample showed higher retaining amount of sulfated glycosaminoglycans content (75.64%) than SDS (33.28%). In addition, we investigated the cell biocompatibility and osteogenic effect of dECM-BCP scaffolds using preosteoblasts (MC3T3-E1). Compared to bare BCP scaffolds, dECM-BCP_F/T scaffolds showed improved cell attachment and proliferation based on immunofluorescence staining and water soluble tetrazolium salts assay (p < .001). Moreover, dECM-BCP scaffolds showed increased osteoblastic differentiation of newly seeded preosteoblasts by up-regulating three types of osteoblastic genes (osteopontin, alkaline phosphatase, and bone morphogenic protein-2). This study demonstrated that functionalization of BCP scaffold using cell-derived ECM could be useful for improving the bioactivity of materials and providing suitable microenvironment, especially for osteogenesis. Further study is needed to determine the potential of dECM-BCP scaffold for bone formation and regeneration in vivo.

Keywords: BCP; SDS; decellularization; extracellular matrix; freeze-thaw; rat bone marrow derived mesenchymal stem cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources