Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct:41:63-73.
doi: 10.1016/j.media.2017.07.002. Epub 2017 Jul 21.

SpineNet: Automated classification and evidence visualization in spinal MRIs

Affiliations

SpineNet: Automated classification and evidence visualization in spinal MRIs

Amir Jamaludin et al. Med Image Anal. 2017 Oct.

Abstract

The objective of this work is to automatically produce radiological gradings of spinal lumbar MRIs and also localize the predicted pathologies. We show that this can be achieved via a Convolutional Neural Network (CNN) framework that takes intervertebral disc volumes as inputs and is trained only on disc-specific class labels. Our contributions are: (i) a CNN architecture that predicts multiple gradings at once, and we propose variants of the architecture including using 3D convolutions; (ii) showing that this architecture can be trained using a multi-task loss function without requiring segmentation level annotation; and (iii) a localization method that clearly shows pathological regions in the disc volumes. We compare three visualization methods for the localization. The network is applied to a large corpus of MRI T2 sagittal spinal MRIs (using a standard clinical scan protocol) acquired from multiple machines, and is used to automatically compute disk and vertebra gradings for each MRI. These are: Pfirrmann grading, disc narrowing, upper/lower endplate defects, upper/lower marrow changes, spondylolisthesis, and central canal stenosis. We report near human performances across the eight gradings, and also visualize the evidence for these gradings localized on the original scans.

Keywords: MRI analysis; Radiological classification; Spinal MRI.

PubMed Disclaimer

MeSH terms