Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec 1;6(12):6886-6895.
doi: 10.1039/c5sc02944a. Epub 2015 Sep 22.

Naphthalenebisimides as photofunctional surfactants for SWCNTs - towards water-soluble electron donor-acceptor hybrids

Affiliations

Naphthalenebisimides as photofunctional surfactants for SWCNTs - towards water-soluble electron donor-acceptor hybrids

Konstantin Dirian et al. Chem Sci. .

Abstract

A water soluble naphthalenebisimide derivative (NBI) was synthesized and probed to individualize, suspend, and stabilize single wall carbon nanotubes (SWCNTs). Besides a comprehensive photophysical and electrochemical characterization of NBI, stable suspensions of SWCNTs were realized in buffered D2O. Overall, the dispersion efficiency of the NBI surfactant was determined by comparison with naphthalene based references. Successful individualization of SWCNTs was corroborated in several microscopic assays. In addition, emission spectroscopy points to the strong quenching of SWCNT centered band gap emission, when NBIs are immobilized onto SWCNTs. The origin of the quenching was found to be strong electronic communication, which leads to charge separation between NBIs and photoexcited SWCNTs, and, which yields reduced NBIs as well oxidized SWCNTs. Notably, electrochemical considerations revealed that the energy content of these charge separated states is one of the highest reported for SWCNT based electron donor-acceptor hybrids so far.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Synthesis of NBI 1 (i) 6-aminocapronic acid, toluene/ethanol (1 : 1), 100 °C, o.n.; (ii) 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methoxymorpholinium chloride, THF, NG-1, 5 h; (iii) HCOOH, r.t., 12 h.
Fig. 1
Fig. 1. Absorption spectrum (black) and fluorescence spectrum (red) of 1 (7.25 × 10–6 M) in D2O/H2PO4 /HPO4 2– upon 325 nm excitation.
Fig. 2
Fig. 2. 1O2 fluorescence spectra of 1 in D2O/H2PO4 /HPO4 2– (red) with an OD of 0.1 and D2O/H2PO4 /HPO4 2– (black) upon 360 nm excitation.
Fig. 3
Fig. 3. Top: CVs of 5 × 10–4 M 1 in D2O/H2PO4 /HPO4 2– (black) and of D2O/H2PO4 /HPO4 2– (red) obtained at a 50 mV s–1 scan rate. Bottom: differential absorption spectrum of 1 in D2O/H2PO4 /HPO4 2– obtained upon electrochemical reduction with an applied potential of –800 mV vs. Ag-wire.
Fig. 4
Fig. 4. Top: differential absorption spectrum of 1 in stirred D2O/H2PO4 /HPO4 2– obtained upon femtosecond flash photolysis (387 nm) with a time delay of 250 ns. Bottom: time-absorption profile at 483 nm monitoring in the absence (black) and the presence (red) of molecular oxygen the decay of the triplet excited states.
Fig. 5
Fig. 5. Differential absorption spectra of HiPco-SWCNT/SDBS in D2O/0.05 M NaCl obtained during four electrochemical cycles, that is, from 0 to –800 to +600 mV and back to 0 in 200 mV intervals.
Fig. 6
Fig. 6. Top: differential absorption spectra of HiPco-SWCNT/SDBS in D2O obtained upon femtosecond flash photolysis (387 nm) with time delays between 2 (black) and 500 ps (blue). Bottom: time absorption profiles at 470 nm (black), and 1323 nm (red), monitoring the excited state decay.
Fig. 7
Fig. 7. Structures of 4 and 5.
Fig. 8
Fig. 8. Top: absorption spectra of 1 (black), HiPco-SWCNT/1 (red) and HiPco-SWCNT/SDBS (grey) recorded in D2O/H2PO4 /HPO4 2–. Bottom: a zoom of the 300–450 nm range with focus on the absorption features of 1 and HiPco-SWCNT/1.
Fig. 9
Fig. 9. Fluorescence spectra, with an equal optical density of about 0.4 at the excitation wavelength (724 nm), of HiPco-SWCNT/SDBS (grey), HiPco-SWCNT/1 (black), and HiPco-SWCNT/1 after addition of SDBS (red) recorded in D2O/H2PO4 /HPO4 2–. The black and red spectra have been amplified by a factor of 5.
Fig. 10
Fig. 10. Top: TEM images (80 kV) of freestanding HiPco-SWCNT/1 (left) and on ultrathin carbon film (right) processed from D2O/H2PO4 /HPO4 2–. Bottom: AFM image of HiPco-SWCNT/1 processed from H2O/pH 10.
Fig. 11
Fig. 11. Top: G-band of HiPco-SWCNT/1 upon 1064 nm excitation on alumina substrates and the corresponding fit by using two Lorentzian functions. Bottom: comparison of the 2D-band of HiPco-SWCNT/SDBS (black) and HiPco-SWCNT/1 (red) upon 1064 nm excitation on alumina substrates.
Fig. 12
Fig. 12. Top: differential absorption spectra of HiPco-SWCNT/1 in D2O/H2PO4 /HPO4 2– obtained upon femtosecond flash photolysis (387 nm) with time delays between 2 (black) and 500 ps (blue). Bottom: time absorption profiles at 470 nm (black) and 1435 nm (red) monitoring the charge separation and charge recombination.
Fig. 13
Fig. 13. Energy diagram of HiPco-SWCNT/1.
Fig. 14
Fig. 14. Schematic representation of the mutual orientation of 1 onto HiPco-SWCNT and the resulting interactions.

Similar articles

References

    1. Iijima S. Nature. 1991;354:56.
    1. Li-Li Y., Kinloch I. A., Windle A. H. Science. 2004;304:276. - PubMed
    2. Nardecchia S., Carriazo D., Ferrer M. L., Gutierrez M. C., del Monte F. Chem. Soc. Rev. 2013;42:794. - PubMed
    1. Wang Z., Mohammadzadeh S., Schmaltz T., Kirschner J., Khassanov A., Eigler S., Mundloch U., Backes C., Steinrück H.-G., Magerl A., Hauke F., Hirsch A., Halik M. ACS Nano. 2013;7:11427. - PubMed
    2. Avouris P., Chen Z., Perebeinos V. Nat. Nanotechnol. 2007;2:605. - PubMed
    3. Park H., Afzali A., Han S.-J., Tulevski G. S., Franklin A. D., Tersoff J., Hannon J. B., Haensch W. Nat. Nanotechnol. 2012;7:787. - PubMed
    1. Toma F. M., Sartorel A., Iurlo M., Carraro M., Parisse P., Maccato C., Rapino S., Rodriguez Gonzalez B., Amenitsch H., Da Ros T., Casalis L., Goldoni A., Marcaccio M., Scorrano G., Scoles G., Paolucci F., Prato M., Bonchio M. Nat. Chem. 2010;2:826. - PubMed
    1. Bartelmess J., Ballesteros B., de la Torre G., Kiessling D., Campidelli S., Prato M., Torres T., Guldi D. M. J. Am. Chem. Soc. 2010;132:16202. - PubMed
    2. Campidelli S., Ballesteros B., Filoramo A., Diaz D. D., de la Torre G., Torres T., Rahman G. M. A., Ehli C., Kiessling D., Werner F., Sgobba V., Guldi D. M., Cioffi C., Prato M., Bourgoin J.-P. J. Am. Chem. Soc. 2008;130:11503. - PubMed
    3. Ince M., Bartelmess J., Kiessling D., Dirian K., Martınez-Diaz M. V., Torres T., Guldi D. M. Chem. Sci. 2012;3:1472.
    4. Guldi D. M., Sgobba V. Chem. Commun. 2011;47:606. - PubMed
    5. Sandanayaka A. S. D., Maligaspe E., Hasobe T., Ito O., D'Souza F. Chem. Commun. 2010;46:8749. - PubMed
    6. Das S. K., Subbaiyan N. K., D'Souza F., Sandanayaka A. S. D., Hasobe T., Ito O. Energy Environ. Sci. 2011;4:707.
    7. Dirian K., Herranz A. M., Katsukis G., Malig J., Rodriguez-Perez L., Romero-Nieto C., Strauss V., Martin N., Guldi D. M. Chem. Sci. 2013;4:4335.

LinkOut - more resources