Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 21;56(16):9574-9584.
doi: 10.1021/acs.inorgchem.7b01032. Epub 2017 Jul 31.

Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials

Affiliations

Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials

Craig M Lieberman et al. Inorg Chem. .

Abstract

A series of mixed-valent, heterometallic (mixed-transition metal) diketonates that can be utilized as prospective volatile single-source precursors for the low-temperature preparation of MxM'3-xO4 spinel oxide materials is reported. Three iron-cobalt complexes with Fe/Co ratios of 1:1, 1:2, and 2:1 were synthesized by several methods using both solid-state and solution reactions. On the basis of nearly quantitative reaction yields, elemental analyses, and comparison of metal-oxygen bonds with those in homometallic analogues, heterometallic compounds were formulated as [FeIII(acac)3][CoII(hfac)2] (1), [CoII(hfac)2][FeIII(acac)3][CoII(hfac)2] (2), and [FeII(hfac)2][FeIII(acac)3][CoII(hfac)2] (3). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated CoII/FeII centers chelated by two hexafluoroacetylacetonate (hfac) ligands maintain bridging interactions with oxygen atoms of acetylacetonate (acac) groups that chelate the neighboring FeIII metal ion. Preliminary assignment of Fe and Co positions/oxidation states in 1-3 drawn from X-ray structural investigation was corroborated by a number of complementary techniques. Single-crystal resonant synchrotron diffraction and neutron diffraction experiments unambiguously confirmed the location of Fe and Co sites in the molecules of dinuclear (1) and trinuclear (2) complexes, respectively. Direct analysis in real time mass spectrometry revealed the presence of FeIII- and CoII-based fragments in the gas phase upon evaporation of precursors 1 and 2 as well as of FeIII, FeII, and CoII species for complex 3. Theoretical investigation of two possible "valent isomers", [FeIII(acac)3][CoII(hfac)2] (1) and [CoIII(acac)3][FeII(hfac)2] (1'), provided an additional support for the metal site/oxidation state assignment giving a preference of 6.48 kcal/mol for the experimentally observed molecule 1. Magnetic susceptibility measurements data are in agreement with the presence of high-spin FeIII and CoII magnetic centers with weak anti-ferromagnetic coupling between those in molecules of 1 and 2. Highly volatile heterometallic complexes 1-3 were found to act as effective single-source precursors for the low-temperature preparation of iron-cobalt spinel oxides FexCo3-xO4 known as important materials for diverse energy-related applications.

PubMed Disclaimer

LinkOut - more resources