Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul 31;10(3):68.
doi: 10.3390/ph10030068.

Assessment of Bone Metastases in Patients with Prostate Cancer-A Comparison between 99mTc-Bone-Scintigraphy and [68Ga]Ga-PSMA PET/CT

Affiliations

Assessment of Bone Metastases in Patients with Prostate Cancer-A Comparison between 99mTc-Bone-Scintigraphy and [68Ga]Ga-PSMA PET/CT

Lena Thomas et al. Pharmaceuticals (Basel). .

Abstract

Purpose: Bone scintigraphy is the standard of reference in bone metastases in prostate cancer patients. However, new radiotracers employed in prostate-specific membrane antigen (PSMA)-ligands has led to the growing importance of PET/CT as diagnostic tool. The aim of our study was to investigate the difference between bone scan and PSMA-PET/CT for the detection of bone metastases in prostate cancer.

Methods: Thirty patients with bone metastases originating from prostate cancer were examined by 99mTc-MDP bone scan and 68Ga-PSMA-PET/CT within an average of 21 days. Bone scans were analyzed visually according to the number of lesions and using the software package ExiniBONE by Exini Diagnostics. PET/CT data was analyzed visually. Numbers of detected lesions were compared for the different methods for the whole patient and for different regions. In addition, results were compared to serum prostate-specific antigen (PSA), alkaline phosphatase (ALP), bone alkaline phosphatase (bALP), pro gastrin releasing peptide (pGRP) and eastern cooperative oncology group (ECOG) performance status.

Results: In the bone scans, visual and semiautomatic lesion detection showed similar results with an average of 19.4 and 17.8 detected bone lesion per patient. However, in PSMA-PET/CT, on average double the numbers of lesions (40.0) were detected. The largest differences were found in the thorax and pelvis, which can be explained by the advantages of tomographic imaging. Bland-Altman analysis showed greater differences in patients with large numbers of bone metastases.

Conclusion: No significant difference was found when using semiautomatic analysis compared to visual reading for bone scans. Fewer bone metastases were detected in bone scans than in PSMA-PET/CT. However, in none of our patients would the difference have led to clinical consequences. Therefore, it seems that for patients undergoing PSMA-PET/CT, there is no need to perform additional bone scans if the appropriate PET/CT protocols are applied.

Keywords: PSMA-PET/CT; bone scan index; bone scintigraphy; prostate cancer.

PubMed Disclaimer

Conflict of interest statement

The EXINI boneBSI software was provided for free in context of a non-commercial research agreement between R.A.B. and EXINI Diagnostics. R.A.B. and M.E. are consultants to Bayer Healthcare AG (Leverkusen, Germany), L.T. received travelling support from Bayer Healthcare AG (Leverkusen, Germany), R.A.B. is in the speakers bureau of Mediso Medical Imaging Systems Ltd. (Budapest, Hungary). All other authors had full control of the data and information submitted for publication. No potential conflicts of interest were disclosed by the other authors.

Figures

Figure 1
Figure 1
Graph of the average difference of detected lesions based on regions for (A) visual analysis of bone scans and semiautomatic analysis (EXINI) of bone scans, (B) visual analysis of bone scans and [68Ga]Ga-PSMA-PET/CT, (C) semiautomatic analysis of bone scans (EXINI) and [68Ga]Ga-PSMA-PET/CT.
Figure 2
Figure 2
Bland-Altman plot including the linear trend of the comparison of (A) visual analysis of bone scans and semiautomatic analysis (EXINI) of bone scans, (B) visual analysis of bone scans and [68Ga]Ga-PSMA-PET/CT, (C) semiautomatic analysis of bone scans (EXINI) and [68Ga]Ga-PSMA-PET/CT.
Figure 3
Figure 3
Example of a case in which the semiautomatic tool uptake in the renal system was classified as metastasis (red marked areas).
Figure 4
Figure 4
Example of a case in which the semiautomatic tool showed no lesions suspicious for metastases in the bone scan images (Left and Middle), while the visual analysis suspected bone lesions in the cervical, thoracic, and lumbar spine. PSMA-PET/CT agreed with these findings (Right).

References

    1. Surveillance, Epidemiology, and End Results Program . In: SEER Stat Fact Sheets: Prostate Cancer. Site NCIW, editor. Surveillance, Epidemiology, and End Results Program; Rockville, MD, USA: 2015.
    1. Jacobs S.C. Spread of prostatic cancer to bone. Urology. 1983;21:337–344. doi: 10.1016/0090-4295(83)90147-4. - DOI - PubMed
    1. Heidenreich A., Bastian P.J., Bellmunt J., Bolla M., Joniau S., van der Kwast T., Mason M., Matveev V., Wiegel T., Zattoni F., et al. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent-update 2013. Eur. Urol. 2014;65:124–137. doi: 10.1016/j.eururo.2013.09.046. - DOI - PubMed
    1. Imbriaco M., Larson S.M., Yeung H.W., Mawlawi O.R., Erdi Y., Venkatraman E.S., Scher H.I. A new parameter for measuring metastatic bone involvement by prostate cancer: The bone scan index. Clin. Cancer Res. 1998;4:1765–1772. - PubMed
    1. Sadik M., Hamadeh I., Nordblom P., Suurkula M., Hoglund P., Ohlsson M., Edenbrandt L. Computer-assisted interpretation of planar whole-body bone scans. J. Nucl. Med. 2008;49:1958–1965. doi: 10.2967/jnumed.108.055061. - DOI - PubMed

LinkOut - more resources