Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2017 Aug 1:6:e29503.
doi: 10.7554/eLife.29503.

Silencing repetitive DNA

Affiliations
Comment

Silencing repetitive DNA

Nahid Iglesias et al. Elife. .

Abstract

Some RNAs in mammalian cells can help to silence the DNA they are transcribed from.

PubMed Disclaimer

Conflict of interest statement

The authors declare that no competing interests exist.

Figures

Figure 1.
Figure 1.. New role for RNA in retaining Suv39h enzymes on heterochromatin.
(A) Mammalian chromosomes generally have several regions where DNA is tightly packed into a structure called heterochromatin (red). These include repeated DNA sequences near to centromeres (called pericentric satellite repeats) and other DNA repeats at the ends of chromosomes (called telomeric DNA repeats). (B) A human Suv39h enzyme called SUV39H1 and two mouse enzymes (Suv39h1 and Suv39h2) all contain a chromodomain (CD; turquoise) and a SET domain (shown in red and yellow), which can add methyl groups to a specific location on histone H3. Suv39h2 also has a basic domain (BD; purple) at the N-terminal end of the protein, while the other two enzymes have a region known as the N-terminal extension (NTE; pink). (C) Johnson et al., Shirai et al., and Velazquez Camacho et al. found that H3K9me3 modifications (small red circles) on histones (blue) and noncoding RNA (green) transcribed from pericentric satellite repeats work together to promote the association of mouse Suv39h1 (left), Suv39h2 (right) and human SUV39H1 (not shown) with heterochromatin. For Suv39h1, different surfaces on the chromodomain are involved in binding to H3K9me3 modifications and RNA, while the NTE interacts with DNA (black) and a downstream factor known as heterochromatin protein 1 (HP1), which is required to silence DNA. For Suv39h2, the basic domain and the chromodomain interact with RNA and H3K9me3, respectively.

Comment on

References

    1. Aravin AA, Hannon GJ, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science. 2007;318:761–764. doi: 10.1126/science.1146484. - DOI - PubMed
    1. Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nature Reviews Genetics. 2015;16:71–84. doi: 10.1038/nrg3863. - DOI - PMC - PubMed
    1. Ishida M, Shimojo H, Hayashi A, Kawaguchi R, Ohtani Y, Uegaki K, Nishimura Y, Nakayama J. Intrinsic nucleic acid-binding activity of Chp1 chromodomain is required for heterochromatic gene silencing. Molecular Cell. 2012;47:228–241. doi: 10.1016/j.molcel.2012.05.017. - DOI - PubMed
    1. Johnson WL, Yewdell WT, Bell JC, McNulty SM, Duda Z, O'Neill RJ, Sullivan BA, Straight AF. RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. eLife. 2017;6:e25299. doi: 10.7554/eLife.25299. - DOI - PMC - PubMed
    1. Müller MM, Fierz B, Bittova L, Liszczak G, Muir TW. A two-state activation mechanism controls the histone methyltransferase Suv39h1. Nature Chemical Biology. 2016;12:188–193. doi: 10.1038/nchembio.2008. - DOI - PMC - PubMed

LinkOut - more resources