Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 15;77(16):4389-4401.
doi: 10.1158/0008-5472.CAN-16-1611. Epub 2017 Jul 31.

Normal and Malignant Cells Exhibit Differential Responses to Calcium Electroporation

Affiliations

Normal and Malignant Cells Exhibit Differential Responses to Calcium Electroporation

Stine K Frandsen et al. Cancer Res. .

Abstract

Calcium electroporation may offer a simple general tool for anticancer therapy. Transient permeabilization of cancer cell membranes created by applying short, high-voltage pulses in tumors enables high calcium influxes that trigger cell death. In this study, we compared the relative sensitivity of different human tumor models and normal tissues to calcium electroporation. Plasma membrane Ca2+-ATPase (PMCA) protein expression was confirmed in vitro in all cancer cell lines and normal primary dermal fibroblasts studied. In all tumor types tested in vivo, calcium electroporation effectively induced necrosis, with a range of sensitivities observed (36%-88%) 2 days after treatment. Necrosis was induced using calcium concentrations of 100-500 mmol/L and injection volumes 20%-80% of tumor volume. Notably, only limited effects were seen in normal tissue. Calcium content increased >7-fold in tumor and skin tissue after calcium electroporation but decreased in skin tissue 4 hours after treatment to levels comparable with untreated controls, whereas calcium content endured at high levels in tumor tissue. Mechanistic experiments in vitro indicated that calcium influx was similar in fibroblasts and cancer cells. However, we observed decreased PMCA expression in cancer cells compared with fibroblasts, offering a potential explanation for the different calcium content in tumor cells versus normal tissues. Overall, our results suggest that calcium electroporation can elicit a rapid and selective necrosis of solid tumors, with limited deleterious effects on surrounding normal tissues. Cancer Res; 77(16); 4389-401. ©2017 AACR.

PubMed Disclaimer

Publication types

LinkOut - more resources