Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct 9;23(56):14080-14089.
doi: 10.1002/chem.201703229. Epub 2017 Sep 8.

Total Synthesis of the Schisandraceae Nortriterpenoid Rubriflordilactone A

Affiliations

Total Synthesis of the Schisandraceae Nortriterpenoid Rubriflordilactone A

Guilhem Chaubet et al. Chemistry. .

Abstract

Full details of the total synthesis of the Schisandraceae nortriterpenoid natural product rubriflordilactone A are reported. Palladium- and cobalt-catalyzed polycyclizations were employed as key strategies to construct the central pentasubstituted arene from bromoendiyne and triyne precursors. This required the independent assembly of two AB ring aldehydes for combination with a common diyne component. A number of model systems were explored to investigate these two methodologies, and also to establish routes for the installation of the challenging benzopyran and butenolide rings.

Keywords: cascade cyclization; cyclotrimerization; natural products; total synthesis; transition-metal catalysis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schinortriterpenoid natural products prepared by total synthesis, and common structural features.
Scheme 1
Scheme 1
Retrosynthetic analysis of rubriflordilactone A.
Scheme 2
Scheme 2
Reagents and conditions for large scale synthesis of 19 and 23. Masses indicate the scale reactions were conducted on. a) PdCl2(PPh3)2. (3 mol %), Bu3SnH, THF; b) TBSCl, imid., DMF, 0 °C to RT; c) Pd(dba)2. (4 mol %), 2,3‐dibromopropene, toluene, 70 °C; d) PMBTCA, Sc(OTf)3 (5 mol %), PhMe; e) CSA (10 mol %), MeOH; then NEt3; f) Ti(OiPr)4, d‐(−)‐diethyl tartrate, tBuOOH, 4 Å MS, CH2Cl2, −20 °C; g) allylMgBr, THF, 0 °C; h) Dess–Martin periodinane, NaHCO3, CH2Cl2; i) 2‐methyl‐2‐butene, NaClO2, NaH2PO4, tBuOH/H2O (2:1); j) BOPCl, py, MeCN; k) MeMgBr, THF −50 °C to RT; l) TBSCl, imid., DMAP, CH2Cl2; m) nBuLi, THF, −78 °C; EtOCOCl, −78 °C to RT; n) TMSC≡CCH2MgBr, CuBr⋅SMe2, THF, −40 °C; then 24, THF, −78 °C; o) DIBALH, CH2Cl2, −78 °C→rt; p) MeMgBr, THF, −5 °C. BOPCl=bis(2‐oxo‐3‐oxazolidinyl) phosphinic chloride; CSA=(±)‐camphorsulfonic acid; dba=dibenzylidene acetone; DIBALH=diisobutylaluminium hydride; DMAP=4‐dimethylamino pyridine; PMB=4‐methoxybenzyl. PMBTCA=4‐methoxybenzyl trichloroacetimidate, TBS=tert‐butyldimethylsilyl.
Figure 2
Figure 2
a: Attempted optimization of π‐allyl Stille coupling of stannane 26. All reactions were carried out on a 150 mg scale. [a] Addition of stannane to a solution of bromide. [b] Catalyst formed in situ from Pd(dba)2/2 PPh3 on treatment with H2. [c] 32 % yield of a mixture of 28 and 29. b: Addition of MeMgBr to β‐lactones 20 and 30.
Scheme 3
Scheme 3
Reagents and conditions: a) OsO4 (2 mol %), NaIO4, 2,6‐lutidine, 1,4‐dioxane/ H2O; b) TFA, CH2Cl2, 0 °C; c) CSA (10 mol %), MeOH, 0 °C; d) SO3⋅py, iPr2EtN, DMSO, CH2Cl2, 0 °C; e) (PhO)2P(O)CH2CO2Et, KHMDS, THF −20 °C→0 °C; f) TFA, CH2Cl2/H2O, 0 °C; g) K2CO3, MeOH. KHMDS=potassium bis(trimethylsilyl)amide; TFA=trifluoroacetic acid.
Scheme 4
Scheme 4
Reagents and conditions: a) EDC⋅HCl, NEt3, DMAP; b) LiHMDS, NEt3, PhMe, −78 °C→RT; then 5 % NaOH; then conc. HCl; c) TMSCHN2, MeOH/PhMe, 0 °C→RT; d) DIBALH, CH2Cl2, −78 °C→RT; e) DMP, NaHCO3, CH2Cl2; f) NaHMDS, [Ph3PCH2I]I, THF, −78 °C→RT; NaHMDS, −78 °C→RT; g) LiHMDS, THF, −78 °C; BnMe2SiCl, −78 °C to RT, 88 %; h) DDQ, CH2Cl2; i) DMP, NaHCO3, CH2Cl2; j) CBr4, PPh3, CH2Cl2, 0 °C; then 50, NEt3, −30 °C→0 °C; k) nBuLi, THF, −78 °C→RT. DDQ=2,3‐Dichloro‐5,6‐dicyano‐1,4‐benzoquinone; DMP=Dess–Martin periodinane; EDC=1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide.
Scheme 5
Scheme 5
Reagents and conditions: a) 13, LiHMDS, THF, −78 °C; then add aldehyde; b) TBSCl, imid., DMAP, CH2Cl2; c) Pd(PPh3)4 (5 mol %), NEt3, MeCN, 80 °C; d) CpCo(CO)2 (20 mol %), PPh3 (40 mol %), PhCl, MW (300 W), 150 °C; e) TBAF, THF; then MeOH, H2O2, KHCO3; f) Et3SiH, ZnCl2, CH2Cl2; TBAF, THF; g) OsO4 (4 mol %), NMO, acetone/H2O (3:1); h) NaIO4/SiO2, CH2Cl2. Cp=cyclopentadienyl; NMO=N‐methylmorpholine‐N‐oxide; TBAF=tetrabutylammonium fluoride.
Scheme 6
Scheme 6
Reagents and conditions: a) Ph3PCHCO2Me, PhMe, 110 °C; b) H2, Pd/C, MeOH; c) TESCl, imid., DMAP, CH2Cl2; d) DIBAL‐H, CH2Cl2, −78 °C; e) BF3⋅OEt2, Et2O, −78 °C→0 °C; f) MsCl, NEt3, CH2Cl2, 0 °C→RT; g) TBAF, THF; h) Conditions (see text); i) Tf2O, iPr2EtN, CH2Cl2, 0 °C; j) Pd(OAc)2 (10 mol %), dppf or (S)‐tolBINAP (12 mol %), K2CO3, PhMe, 90 °C; k) DIAD, PPh3, CH2Cl2, 0 °C. DIAD=diisopropyl azodicarboxylate; dppf=1,1′‐bis(diphenylphosphino)ferrocene; Ms=SO2Me; TES=SiEt3; TES=triethylsilyl; Tf=SO2CF3.
Scheme 7
Scheme 7
Reagents and conditions: a) SOCl2, ZnCl2, PhMe, 0 °C→RT; b) ZnCl2, CH2Cl2, −40 °C→RT; c) TIPSOTf, Et3N, CH2Cl2, 0 °C. TIPS=triisopropylsilyl.
Scheme 8
Scheme 8
Reagents and conditions: a) SOCl2, ZnCl2, PhMe, 0 °C→RT; b) ZnCl2, CH2Cl2, −40 °C→RT. Graph a: Reaction profile (monitored by 1H NMR for conversion of lactol 64 to chloropyran 80 via dimer 81; Graph b: Reaction profile for conversion of 81 to 80; Graph c: Example 1H NMR timecourse experiment.
Scheme 9
Scheme 9
Reagents and conditions: a) 13, nBuLi, THF, −78 °C; then add aldehyde 14 or 15, −78 °C→−10 °C; b) TBSOTf, 2,6‐lutidine, CH2Cl2, 0 °C→RT; c) Pd(PPh3)4 (10 mol %), NEt3, MeCN, 80 °C; d) TBSCl, imid., DMAP, CH2Cl2; e) CpCo(CO)2 (20 mol %), PPh3 (40 mol %), PhCl, MW (300 W), 150 °C; f) TBAF, THF; then MeOH, H2O2, KHCO3; g) Et3SiH, ZnCl2, CH2Cl2; h) TBAF, THF; i) OsO4 (2 mol %), NMO, acetone/H2O (3:1); j) NaIO4/SiO2, CH2Cl2; k) SOCl2, ZnCl2, PhMe, 0 °C→RT; l) 67, ZnCl2, CH2Cl2, −40 °C→RT.

Similar articles

Cited by

References

    1. Hancke J. L., Burgos R. A., Ahumada F., Fitoterapia 1999, 70, 451.
    1. None
    1. For reviews on Schisandraceae natural products, see: Li X., Cheong P. H.-Y., Carter R. G., Angew. Chem. Int. Ed. 2017, 56, 1704;
    2. Angew. Chem. 2017, 129, 1728;
    1. Shi Y.-M., Xiao W.-L., Pu J.-X., Sun H.-D., Nat. Prod. Rep. 2015, 32, 367; - PubMed
    1. For reviews, see: Xia Y.-G., Yang B.-Y., Kuang H.-X., Phytochem. Rev. 2015, 14, 155;