Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec;7(1):79.
doi: 10.1186/s13613-017-0305-2. Epub 2017 Aug 2.

How to reduce cisatracurium consumption in ARDS patients: the TOF-ARDS study

Affiliations

How to reduce cisatracurium consumption in ARDS patients: the TOF-ARDS study

Sami Hraiech et al. Ann Intensive Care. 2017 Dec.

Abstract

Background: Neuromuscular blocking agents (NMBAs) have been shown to improve the outcome of the most severely hypoxemic, acute respiratory distress syndrome (ARDS) patients. However, the recommended dosage as well as the necessity of monitoring the neuromuscular block is unknown. We aimed to evaluate the efficiency of a nurse-directed protocol of NMBA administration based on a train-of-four (TOF) assessment to ensure a profound neuromuscular block and decrease cisatracurium consumption compared to an elevated and constant dose regimen. A prospective open labeled study was conducted in two medical intensive care units of two French university hospitals. Consecutive ARDS patients with a PaO2/FiO2 ratio less than 120 with a PEEP ≥5 cm H2O were included. Cisatracurium administration was driven by the nurses according to an algorithm based on TOF monitoring. The primary endpoint was cisatracurium consumption. The secondary endpoints included the quality of the neuromuscular block, the occurrence of adverse events, and the evolution of ventilatory and blood gas parameters.

Results: Thirty patients were included. NMBAs were used for 54 ± 30 h. According to this new algorithm, the initial dosage of cisatracurium was 11.8 ± 2 mg/h, and the final dosage was 14 ± 4 mg/h, which was significantly lower than in the ACURASYS study protocol (37.5 mg/h with a constant infusion rate (p < 0.001). The overall cisatracurium dose used was 700 ± 470 mg in comparison with 2040 ± 1119 mg for patients had received the ACURASYS dosage for the same period (p < 0.001). A profound neuromuscular block (TOF = 0, twitches at the ulnar site) was obtained from the first hour in 70% of patients. Modification of the cisatracurium dosage was not performed from the beginning to the end of the study in 60% of patients. Patient-ventilator asynchronies occurred in 4 patients.

Conclusion: A nurse-driven protocol based on TOF monitoring for NMBA administration in ARDS patients was able to decrease cisatracurium consumption without significantly affecting the quality of the neuromuscular block.

Keywords: ARDS; Cisatracurium; Cost; Neuromuscular blockers; Train-of-four.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Nurse-directed protocol of TOF monitoring and cisatracurium management
Fig. 2
Fig. 2
Mean daily cisatracurium dosage. The data are presented as the mean ± SD. The constant horizontal bar represents the theoretical dosage that would have been used following the ACURASYS study protocol (37.5 mg/h). *p < 0.001 between ACURASYS and TOF-ARDS dosage
Fig. 3
Fig. 3
Cumulative cisatracurium doses received by the study patients compared to the theoretical dosage that would have been administered according to the ACURASYS study. The box plot limits represent the 25th and 75th percentiles, and the bars represent the 5th and 95th percentiles. The median is represented as a horizontal line. Extreme values are represented by circles
Fig. 4
Fig. 4
Cisatracurium dosage changes from day 1 to day 4. Each circle represents a patient. The total number of patients still receiving cisatracurium is given on the abscissa axis

References

    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. doi: 10.1001/jama.2016.0291. - DOI - PubMed
    1. Network Acute Respiratory Distress Syndrome, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801. - DOI - PubMed
    1. Papazian L, Forel J-M, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–1116. doi: 10.1056/NEJMoa1005372. - DOI - PubMed
    1. Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–2168. doi: 10.1056/NEJMoa1214103. - DOI - PubMed
    1. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–442. doi: 10.1164/rccm.201605-1081CP. - DOI - PubMed

LinkOut - more resources