Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2017 Aug 4;15(1):145.
doi: 10.1186/s12916-017-0888-3.

The clinical utility of the urine-based lateral flow lipoarabinomannan assay in HIV-infected adults in Myanmar: an observational study

Affiliations
Observational Study

The clinical utility of the urine-based lateral flow lipoarabinomannan assay in HIV-infected adults in Myanmar: an observational study

Swe Swe Thit et al. BMC Med. .

Abstract

Background: The use of the point-of-care lateral flow lipoarabinomannan (LF-LAM) test may expedite tuberculosis (TB) diagnosis in HIV-positive patients. However, the test's clinical utility is poorly defined outside sub-Saharan Africa.

Methods: The study enrolled consecutive HIV-positive adults at a tertiary referral hospital in Yangon, Myanmar. On enrolment, patients had a LF-LAM test performed according to the manufacturer's instructions. Clinicians managing the patients were unaware of the LF-LAM result, which was correlated with the patient's clinical course over the ensuing 6 months.

Results: The study enrolled 54 inpatients and 463 outpatients between July 1 and December 31, 2015. On enrolment, the patients' median (interquartile range) CD4 T-cell count was 270 (128-443) cells/mm3. The baseline LF-LAM test was positive in 201/517 (39%). TB was confirmed microbiologically during follow-up in 54/517 (10%), with rifampicin resistance present in 8/54 (15%). In the study's resource-limited setting, extrapulmonary testing for TB was not possible, but after 6 months, 97/201 (48%) with a positive LF-LAM test on enrolment had neither died, required hospitalisation, received a TB diagnosis or received empirical anti-TB therapy, suggesting a high rate of false-positive results. Of the 97 false-positive tests, 89 (92%) were grade 1 positive, suggesting poor test specificity using this cut-off. Only 21/517 (4%) patients were inpatients with TB symptoms and a CD4 T-cell count of < 100 cells/mm3. Five (24%) of these 21 died, three of whom had a positive LF-LAM test on enrolment. However, all three received anti-TB therapy before death - two after diagnosis with Xpert MTB/RIF testing, while the other received empirical treatment. It is unlikely that knowledge of the baseline LF-LAM result would have averted any of the study's other 11 deaths; eight had a negative test, and of the three patients with a positive test, two received anti-TB therapy before death, while one died from laboratory-confirmed cryptococcal meningitis. The test was no better than a simple, clinical history excluding TB during follow-up (negative predictive value (95% confidence interval): 94% (91-97) vs. 94% (91-96)).

Conclusions: The LF-LAM test had limited clinical utility in the management of HIV-positive patients in this Asian referral hospital setting.

Keywords: Clinical management; Diagnostic test; Human immunodeficiency virus; Lipoarabinomannan; Myanmar; Tuberculosis.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Study profile. No patients were lost to follow-up during the study period
Fig. 2
Fig. 2
Clinical course of patients enrolled as inpatients. aOne case of TB meningitis, one case of miliary TB. bOne case of suspected TB meningitis. cOne case of microbiologically confirmed cryptococcal meningitis. dTwo cases of suspected Pneumocystis jirovecii pneumonia
Fig. 3
Fig. 3
Clinical course of patients enrolled as outpatients. aOne case of suspected miliary TB, one case of suspected TB meningitis. bOne case of confirmed TB meningitis (rifampicin resistant on Xpert MTB/RIF assay). cTwo cases of suspected TB meningitis, one case of suspected miliary TB, one case of suspected toxoplasmosis, one case of HIV cachexia. dOne case of confirmed cryptococcal meningitis, one case of suspected toxoplasmosis
Fig. 4
Fig. 4
Ability of the LF-LAM test to predict important clinical endpoints in inpatients with TB symptoms. aIncludes the 6 patients with confirmed TB and 10 patients who had empirical anti-TB therapy started. bAll 7 patients had empirical anti-TB therapy started. PPV positive predictive value, NPV negative predictive value, both presented as percentage (95% confidence interval)

Similar articles

Cited by

References

    1. Gupta RK, Lucas SB, Fielding KL, Lawn SD. Prevalence of tuberculosis in post-mortem studies of HIV-infected adults and children in resource-limited settings: a systematic review and meta-analysis. AIDS. 2015;29(15):1987–2002. doi: 10.1097/QAD.0000000000000802. - DOI - PMC - PubMed
    1. World Health Organization . Global Tuberculosis Report 2016. Geneva: WHO; 2016.
    1. Manosuthi W, Wiboonchutikul S, Sungkanuparph S. Integrated therapy for HIV and tuberculosis. AIDS Res Ther. 2016;13:22. doi: 10.1186/s12981-016-0106-y. - DOI - PMC - PubMed
    1. Shah M, Hanrahan C, Wang ZY, Dendukuri N, Lawn SD, Denkinger CM, Steingart KR. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in HIV-positive adults. Cochrane Database Syst Rev. 2016;5:CD011420. - PMC - PubMed
    1. Siddiqi K, Lambert ML, Walley J. Clinical diagnosis of smear-negative pulmonary tuberculosis in low-income countries: the current evidence. Lancet Infect Dis. 2003;3(5):288–96. doi: 10.1016/S1473-3099(03)00609-1. - DOI - PubMed

Publication types