Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae
- PMID: 28775098
- PMCID: PMC5792181
- DOI: 10.1152/ajplung.00244.2017
Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.
Keywords: M2 protein; Na+/K+-ATPase; calcium-activated Cl− channels; cystic fibrosis transmembrane conductance regulator; epithelial sodium channels.
Copyright © 2017 the American Physiological Society.
Figures






Similar articles
-
Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis.JCI Insight. 2018 Oct 18;3(20):e123467. doi: 10.1172/jci.insight.123467. JCI Insight. 2018. PMID: 30333319 Free PMC article.
-
Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema.Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):E2308-16. doi: 10.1073/pnas.1216382110. Epub 2013 May 3. Proc Natl Acad Sci U S A. 2013. PMID: 23645634 Free PMC article.
-
Ursodeoxycholic acid inhibits ENaC and Na/K pump activity to restore airway surface liquid height in cystic fibrosis bronchial epithelial cells.Steroids. 2019 Nov;151:108461. doi: 10.1016/j.steroids.2019.108461. Epub 2019 Jul 22. Steroids. 2019. PMID: 31344409
-
Role of epithelial sodium channels in the regulation of lung fluid homeostasis.Am J Physiol Lung Cell Mol Physiol. 2015 Dec 1;309(11):L1229-38. doi: 10.1152/ajplung.00319.2015. Epub 2015 Oct 2. Am J Physiol Lung Cell Mol Physiol. 2015. PMID: 26432872 Free PMC article. Review.
-
Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets.Thorax. 2016 Mar;71(3):284-7. doi: 10.1136/thoraxjnl-2015-207588. Epub 2015 Dec 30. Thorax. 2016. PMID: 26719229 Review.
Cited by
-
A Scientific Rationale for Using Cystic Fibrosis Transmembrane Conductance Regulator Therapeutics in COVID-19 Patients.Front Physiol. 2020 Nov 4;11:583862. doi: 10.3389/fphys.2020.583862. eCollection 2020. Front Physiol. 2020. PMID: 33250777 Free PMC article.
-
Ion channels of the lung and their role in disease pathogenesis.Am J Physiol Lung Cell Mol Physiol. 2017 Nov 1;313(5):L859-L872. doi: 10.1152/ajplung.00285.2017. Epub 2017 Oct 12. Am J Physiol Lung Cell Mol Physiol. 2017. PMID: 29025712 Free PMC article. Review.
-
Ion transport mechanisms for smoke inhalation-injured airway epithelial barrier.Cell Biol Toxicol. 2020 Dec;36(6):571-589. doi: 10.1007/s10565-020-09545-1. Epub 2020 Jun 25. Cell Biol Toxicol. 2020. PMID: 32588239 Free PMC article.
-
Reliably sourced airway mucus.Am J Physiol Lung Cell Mol Physiol. 2019 Oct 1;317(4):L496-L497. doi: 10.1152/ajplung.00362.2019. Epub 2019 Sep 11. Am J Physiol Lung Cell Mol Physiol. 2019. PMID: 31508979 Free PMC article. No abstract available.
-
SARS-CoV-2 nucleocapsid protein triggers hyperinflammation via protein-protein interaction-mediated intracellular Cl- accumulation in respiratory epithelium.Signal Transduct Target Ther. 2022 Jul 27;7(1):255. doi: 10.1038/s41392-022-01048-1. Signal Transduct Target Ther. 2022. PMID: 35896532 Free PMC article.
References
-
- Aeffner F, Abdulrahman B, Hickman-Davis JM, Janssen PM, Amer A, Bedwell DM, Sorscher EJ, Davis IC. Heterozygosity for the F508del mutation in the cystic fibrosis transmembrane conductance regulator anion channel attenuates influenza severity. J Infect Dis 208: 780–789, 2013. doi:10.1093/infdis/jit251. - DOI - PMC - PubMed
-
- Åstrand AB, Hemmerling M, Root J, Wingren C, Pesic J, Johansson E, Garland AL, Ghosh A, Tarran R. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition. Am J Physiol Lung Cell Mol Physiol 308: L22–L32, 2015. doi:10.1152/ajplung.00163.2014. - DOI - PMC - PubMed
-
- Ballard ST, Trout L, Bebök Z, Sorscher EJ, Crews A. CFTR involvement in chloride, bicarbonate, and liquid secretion by airway submucosal glands. Am J Physiol 277: L694–L699, 1999. - PubMed
-
- Bebok Z, Varga K, Hicks JK, Venglarik CJ, Kovacs T, Chen L, Hardiman KM, Collawn JF, Sorscher EJ, Matalon S. Reactive oxygen nitrogen species decrease cystic fibrosis transmembrane conductance regulator expression and cAMP-mediated Cl− secretion in airway epithelia. J Biol Chem 277: 43041–43049, 2002. doi:10.1074/jbc.M203154200. - DOI - PubMed
-
- Birket SE, Chu KK, Houser GH, Liu L, Fernandez CM, Solomon GM, Lin V, Shastry S, Mazur M, Sloane PA, Hanes J, Grizzle WE, Sorscher EJ, Tearney GJ, Rowe SM. Combination therapy with cystic fibrosis transmembrane conductance regulator modulators augment the airway functional microanatomy. Am J Physiol Lung Cell Mol Physiol 310: L928–L939, 2016. doi:10.1152/ajplung.00395.2015. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical