Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017;77(6):419.
doi: 10.1140/epjc/s10052-017-4979-2. Epub 2017 Jun 21.

An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

A Albert  1 M André  2 M Anghinolfi  3 G Anton  4 M Ardid  5 J-J Aubert  6 T Avgitas  7 B Baret  7 J Barrios-Martí  8 S Basa  9 V Bertin  6 S Biagi  10 R Bormuth  11   12 S Bourret  7 M C Bouwhuis  11 R Bruijn  11   13 J Brunner  6 J Busto  6 A Capone  14   15 L Caramete  16 J Carr  6 S Celli  14   15   17 T Chiarusi  18 M Circella  19 J A B Coelho  7 A Coleiro  7   8 R Coniglione  10 H Costantini  6 P Coyle  6 A Creusot  7 A Deschamps  20 G De Bonis  14   15 C Distefano  10 I Di Palma  14   15 A Domi  3   21 C Donzaud  7   22 D Dornic  6 D Drouhin  1 T Eberl  4 I El Bojaddaini  23 D Elsässer  24 A Enzenhöfer  6 I Felis  5 F Folger  4 L A Fusco  18   25 S Galatà  7 P Gay  7   26 V Giordano  27 H Glotin  28   29   30 T Grégoire  7 R Gracia Ruiz  7 K Graf  4 S Hallmann  4 H van Haren  31 A J Heijboer  11 Y Hello  20 J J Hernández-Rey  8 J Hößl  4 J Hofestädt  4 C Hugon  3   21 G Illuminati  8 C W James  4 M de Jong  11   12 M Jongen  11 M Kadler  24 O Kalekin  4 U Katz  4 D Kießling  4 A Kouchner  7   30 M Kreter  24 I Kreykenbohm  32 V Kulikovskiy  6   33 C Lachaud  7 R Lahmann  4 D Lefèvre  34   35 E Leonora  27   36 M Lotze  8 S Loucatos  7   37 M Marcelin  9 A Margiotta  18   25 A Marinelli  38   39 J A Martínez-Mora  5 R Mele  40   41 K Melis  11   13 T Michael  11 P Migliozzi  40 A Moussa  23 E Nezri  9 M Organokov  42 G E Păvălaş  16 C Pellegrino  18   25 C Perrina  14   15 P Piattelli  10 V Popa  16 T Pradier  42 L Quinn  6 C Racca  1 G Riccobene  10 A Sánchez-Losa  19 M Saldaña  5 I Salvadori  6 D F E Samtleben  11   12 M Sanguineti  3   21 P Sapienza  10 F Schüssler  37 C Sieger  4 M Spurio  18   25 Th Stolarczyk  37 M Taiuti  3   21 Y Tayalati  43 A Trovato  10 D Turpin  6 C Tönnis  8 B Vallage  7   37 V Van Elewyck  7   30 F Versari  18   25 D Vivolo  40   41 A Vizzoca  14   15 J Wilms  32 J D Zornoza  8 J Zúñiga  8
Affiliations

An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

A Albert et al. Eur Phys J C Part Fields. 2017.

Abstract

A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of [Formula: see text] for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A [Formula: see text] C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of [Formula: see text] is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken [Formula: see text] spectrum and neutrino flavour equipartition at Earth.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Left angular error of the direction reconstruction for shower-like neutrino events as a function of the MC shower energy. Right the ratio of the MC and the reconstructed shower energy, as a function of the MC shower energy. Blue squares denote the median of the distributions. The lower and upper end of the vertical bars in both figures show the 10 and 90% quantiles of the distributions, respectively
Fig. 2
Fig. 2
Left the neutrino effective area after applying the vertex-quality cut to triggered events, and integrated over all directions, as a function of simulated neutrino energy for ν¯e (black full squares) and νe (red open squares) CC events, and ν¯ (black triangles) and for ν (red open triangles) NC events. Right reconstruction efficiency for all triggered shower-like events (black squares) and including the vertex-quality cut (red triangles) as a function of MC shower energy
Fig. 3
Fig. 3
Reconstructed zenith-angle distribution for 1247 days of data taking, with events selected as described in Sects. 4 and 5. Data points and their statistical errors are depicted with black markers and compared to simulated distributions of atmospheric muons (blue), atmospheric neutrinos (red) and the astrophysical flux reported in Ref. [6] (green). The coloured bands indicate the uncertainties on the simulated and measured flux normalisations
Fig. 4
Fig. 4
Distribution of the reconstructed shower energy for 1247 days of data taking, selected as described in Sect. 4 and with a cut on the reconstructed zenith angle applied at Θrec94 (black markers, statistical errors only). Simulated contributions from atmospheric muons (blue), atmospheric neutrinos (red) and an astrophysical flux  [6] (green) have been overlaid for comparison. Coloured bands indicate the uncertainties on the simulated and measured flux normalisations. The atmospheric muon contribution beyond 10 TeV has been extrapolated as described in Sect. 6
Fig. 5
Fig. 5
The 90% C.L. upper limit on the diffuse all-flavour astrophysical neutrino flux obtained in this work (solid red line) in comparison to previously set upper limits (dotted lines, AMANDA-II  [59], Baikal NT-200 [60], and ANTARES νμ [16]) and 2 different measurements of a diffuse astrophysical neutrino flux reported by IceCube (solid blue lines, IC νx/3  [5], and IC νμ [6])

References

    1. Aartsen MG, et al. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 2013;111:021103. doi: 10.1103/PhysRevLett.111.021103. - DOI - PubMed
    1. Aartsen MG, et al. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science. 2013;342:1242856. doi: 10.1126/science.1242856. - DOI - PubMed
    1. Aartsen MG, et al. Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett. 2014;113:101101. doi: 10.1103/PhysRevLett.113.101101. - DOI - PubMed
    1. Aartsen MG, et al. Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube. Phys. Rev. D. 2015;91:022001. doi: 10.1103/PhysRevD.91.022001. - DOI - PubMed
    1. C. Kopper et al., for the IceCube Collaboration, Observation of astrophysical neutrinos in four years of IceCube data, in International Cosmic Ray Conference (ICRC) 2015, Proceedings of Science ICRC2015 (2016)

LinkOut - more resources