Maternal occupational exposure and oral clefts in offspring
- PMID: 28778209
- PMCID: PMC5545025
- DOI: 10.1186/s12940-017-0294-5
Maternal occupational exposure and oral clefts in offspring
Abstract
Background: Previous studies suggest that periconceptional maternal occupational exposure to solvents and pesticides increase the risk of oral clefts in the offspring. Less is known about the effect of occupational exposure to metals, dust, and gases and fumes on development of oral clefts.
Methods: This case-malformed control study used data from a population-based birth defects registry (Eurocat) of children and foetuses born in the Northern Netherlands between 1997 and 2013. Cases were defined as non-syndromic oral clefts. The first control group had chromosomal/monogenic defects, and the second control group was defined as non-chromosomal/non-monogenic malformed controls. Maternal occupational exposure was estimated through linkage of mothers' occupation with a community-based Job Exposure Matrix (JEM). Multivariate logistic regression was used to estimate the effect of occupational exposures. Odds ratios were adjusted (aORs) for relevant confounders.
Results: A total of 387 cases, 1135 chromosomal and 4352 non-chromosomal malformed controls were included in this study. Prevalence of maternal occupational exposures to all agents was 43.9% and 41.0%/37.7% among cases and controls, respectively. Oral clefts had significantly increased ORs of maternal occupational exposure to pesticides (aOR = 1.7, 95% confidence interval [CI] 1.0-3.1) and dust (aOR = 1.3, 95% CI 1.1-1.6) when using non-chromosomal controls. Subgroup analysis for CL(P) stratified by gender showed a significantly increased risk for male infants exposed to 'other solvents' and exposure to mineral dust for female infants.
Conclusion: Our study showed that maternal occupational exposure to pesticides and dust are risk factors for oral clefts in the offspring. Larger studies are needed to confirm this finding.
Keywords: Biological dust; Congenital anomalies; Job-exposure matrix; Metals; Mineral dust; Occupational exposure; Pesticides; Solvents; Teratology.
Conflict of interest statement
Ethics approval and consent to participate
Eurocat data were collected with written informed consent of the parents. Studies using data from these health registries do not require ethical approval in the Netherlands. The principles outlined in the declaration of Helsinki were followed.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
-
- Eurocat NNL. Update: actual numbers of congenital anomalies 2013 (update: actuele cijfers aangeboren aandoeningen 2013). Available at: http://www.rug.nl/research/genetics/eurocat/algemene-cijfers-tabel-2013-.... Accessed 5 July 2015.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
