Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Sep;92(9):1401-1414.
doi: 10.1016/j.mayocp.2017.04.011. Epub 2017 Aug 3.

Electrical Neuromodulation of the Respiratory System After Spinal Cord Injury

Affiliations
Review

Electrical Neuromodulation of the Respiratory System After Spinal Cord Injury

Jan T Hachmann et al. Mayo Clin Proc. 2017 Sep.

Abstract

Spinal cord injury (SCI) is a complex and devastating condition characterized by disruption of descending, ascending, and intrinsic spinal circuitry resulting in chronic neurologic deficits. In addition to limb and trunk sensorimotor deficits, SCI can impair autonomic neurocircuitry such as the motor networks that support respiration and cough. High cervical SCI can cause complete respiratory paralysis, and even lower cervical or thoracic lesions commonly result in partial respiratory impairment. Although electrophrenic respiration can restore ventilator-independent breathing in select candidates, only a small subset of affected individuals can benefit from this technology at this moment. Over the past decades, spinal cord stimulation has shown promise for augmentation and recovery of neurologic function including motor control, cough, and breathing. The present review discusses the challenges and potentials of spinal cord stimulation for restoring respiratory function by overcoming some of the limitations of conventional respiratory functional electrical stimulation systems.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources