Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 2;3(8):e1603229.
doi: 10.1126/sciadv.1603229. eCollection 2017 Aug.

Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments

Affiliations

Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments

Yanling Zheng et al. Sci Adv. .

Abstract

Silver nanoparticles (AgNPs) are the most common materials in nanotechnology-based consumer products globally. Because of the wide application of AgNPs, their potential environmental impact is currently a highly topical focus of concern. Nitrification is one of the processes in the nitrogen cycle most susceptible to AgNPs but the specific effects of AgNPs on nitrification in aquatic environments are not well understood. We report the influence of AgNPs on nitrification and associated nitrous oxide (N2O) production in estuarine sediments. AgNPs inhibited nitrification rates, which decreased exponentially with increasing AgNP concentrations. The response of nitrifier N2O production to AgNPs exhibited low-dose stimulation (<534, 1476, and 2473 μg liter-1 for 10-, 30-, and 100-nm AgNPs, respectively) and high-dose inhibition (hormesis effect). Compared with controls, N2O production could be enhanced by >100% at low doses of AgNPs. This result was confirmed by metatranscriptome studies showing up-regulation of nitric oxide reductase (norQ) gene expression in the low-dose treatment. Isotopomer analysis revealed that hydroxylamine oxidation was the main N2O production pathway, and its contribution to N2O emission was enhanced when exposed to low-dose AgNPs. This study highlights the molecular underpinnings of the effects of AgNPs on nitrification activity and demonstrates that the release of AgNPs into the environment should be controlled because they interfere with nitrifying communities and stimulate N2O emission.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Percentage reduction of nitrification rate in AgNP or Ag+ treatments compared to the no-silver control (incubation time = 12 hours; n = 3).
EC10 and EC50 represent the concentrations that produced a 10 or 50% reduction in nitrification rate relative to the control, respectively. Nonlinear fitted curves (ExpDec1) and equations are given (P < 0.01).
Fig. 2
Fig. 2. Effect of AgNPs or Ag+ on N2O emission during nitrification (incubation time = 12 hours).
Data show the percentage changes of N2O emission in the AgNP or Ag+ treatments compared to the no-silver control (n = 3). Nonlinear fitted curves (Gauss) and equations are given (P < 0.01).
Fig. 3
Fig. 3. Identification of key N2O production pathways.
(A) SP values. (B) Contribution of NH2OH oxidation pathway to N2O emission. (C) Isotopomer ratios at the central site of N2O. (D) Isotopomer ratios at the end site of N2O. Horizontal lines indicate the median, five-point stars show the mean, asterisks indicate outlier, the boxes give the 25th and 75th percentiles, and whiskers show range from the 5th to 95th percentile. Control group represents the incubation without silver. The 10 nm, 30 nm, 100 nm, and Ag+ in the “N2O stimulation” area represent the incubations with AgNPs (100 μg liter−1, 10 nm; 500 μg liter−1, 30 nm; and 1000 μg liter−1, 100 nm) and Ag+ (5 μg liter−1), wherein 43.0, 84.1, 121.5, and 73.9% of N2O emission enhancement were detected, respectively. The 10 nm, 30 nm, 100 nm, and Ag+ in the “N2O inhibition” area represent the incubations with AgNPs (2000 μg liter−1, 10 nm; 3000 μg liter−1, 30 nm; and 3000 μg liter−1, 100 nm) and Ag+ (500 μg liter−1), wherein 89.9, 48.3, 19.0, and 59.3% of N2O emission inhibition were detected, respectively. The incubation time was 12 hours.
Fig. 4
Fig. 4. Response of nitrifying communities to AgNP exposure.
(A) Schematic model depicting the effects of AgNPs on the expression of gene families involved in nitrification. N2O can be produced through NO2 reduction (the bold pink arrows) or incomplete NH2OH oxidation (the bold blue arrows). Upward green arrows indicate that the gene expressions were up-regulated when exposed to AgNPs, the downward red arrows indicate that the gene expressions were down-regulated, and “N” denotes that gene expression was not affected by AgNP exposure. CusA, Cu(I)/Ag(I) efflux system membrane protein cusA; CusB, Cu(I)/Ag(I) efflux system periplasmic protein cusB; amo, ammonia monooxygenase; hao, hydroxylamine oxidase; Cyt554, cytochrome c554; mCyt552, cytochrome cm552; nir, nitrite reductase (NO-forming) nirK; nor, nitric oxide reductase norQ; nxr, nitrite oxidoreductase; Cyt551, cytochrome c551; Cyt552, cytochrome c552; Cyt553, cytochrome c553; Q, ubiquinone; QH2, ubiquinol. The roman numbers refer to the enzyme complex I (NADH-ubiquinone reductase), complex III (ubiquinol-cytochrome c reductase), complex IV (cytochrome c oxidase), and complex V (F-type ATPase) in the respiratory chain (related gene expression regulations by AgNPs are shown in fig. S12). Colored proteins were detected in the cDNA libraries, whereas those in dark gray were not identified but are included in the model of electron transport for reference (74). Dotted blue arrows show the movement of electrons, and white arrows show movement of protons. The membrane was broken by dotted line, as nitrite oxidation did not often occur in the same organism with ammonia oxidation, with the exception of recently discovered comammox Nitrospira (55, 56). (B) Fold change (FC) of transcripts encoding proteins involved in heavy metal stress response, oxidative stress release, and the nitrogen transformation process of nitrifying organisms when exposed to 30-nm AgNP (500 μg liter−1) for 12 hours. FC in relative gene expression was calculated by comparing AgNP-treated samples to the no-silver control. Gene expression levels were calculated on the basis of FPKM. (C) Contribution of different pathways to N2O emission in the no-silver control and the 30-nm AgNP (500 μg liter−1) treatment. (D) TEM image of the no-silver control at 12 hours. (E) TEM image of the 30-nm AgNP (500 μg liter−1) treatment at 12 hours. No apparent physical damage to the cell surface was observed.

Similar articles

Cited by

References

    1. Maynard A. D., Aitken R. J., Butz T., Colvin V., Donaldson K., Oberdörster G., Philbert M. A., Ryan J., Seaton A., Stone V., Tinkle S. S., Tran L., Walker N. J., Warheit D. B., Safe handling of nanotechnology. Nature 444, 267–269 (2006). - PubMed
    1. Gao Y., Luo Z., He N., Wang M. K., Metallic nanoparticle production and consumption in China between 2000 and 2010 and associative aquatic environmental risk assessment. J. Nanopart. Res. 15, 1681–1690 (2013).
    1. Wiesner M. R., Lowry G. V., Alvarez P., Dionysiou D., Biswas P., Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345 (2006). - PubMed
    1. Yang Y., Li M., Michels C., Moreira-Soares H., Alvarez P. J. J., Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge. Environ. Toxicol. Chem. 33, 2234–2239 (2014). - PubMed
    1. Massarsky A., Trudeau V. L., Moon T. W., Predicting the environmental impact of nanosilver. Environ. Toxicol. Phar. 38, 861–873 (2014). - PubMed

Publication types

LinkOut - more resources