Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct:94:605-611.
doi: 10.1016/j.biopha.2017.07.142. Epub 2017 Aug 4.

Influence of quercetin, naringenin and berberine on glucose transporters and insulin signalling molecules in brain of streptozotocin-induced diabetic rats

Affiliations

Influence of quercetin, naringenin and berberine on glucose transporters and insulin signalling molecules in brain of streptozotocin-induced diabetic rats

Sandeep M S et al. Biomed Pharmacother. 2017 Oct.

Abstract

Quercetin, naringenin, and berberine are plant bioactives that can cross the blood-brain barrier and offer neuroprotection. In the present study, we looked into the effect of them on expression of various glucose transporters and key components of brain insulin signalling, namely, insulin receptor substrate 1 (IRS 1), phosphatidyl inositol 3 kinase (PI3K), Akt 1 and low-density lipoprotein receptor-related protein 1 (LRP1) in brain of control, diabetic and bioactive-treated rats by Western blot. Amongst the bioactives tested, quercetin was more potent and restored LRP1 and brain insulin signalling components as well as glucose transporters such as GLUTs 1, 2, 3 and 4 in diabetic animals. On the other hand, berberine and naringenin supplementation to diabetic animals improved brain IRS 1 levels and restored GLUT 1 and GLUT 3 expression without significant effect on PI3K and Akt 1 activation and GLUT 4 levels. From the present study, we conclude that quercetin, naringenin, and berberine can differentially act through insulin-dependent and -independent mechanisms thereby altering glucose homeostasis in the brain during experimental diabetes and bring about the beneficial effect.

Keywords: Brain; Diabetes; Dietary factors; Glucose transport; Insulin signalling; LRP 1.

PubMed Disclaimer

LinkOut - more resources