Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Aug 7;18(1):151.
doi: 10.1186/s12931-017-0634-6.

Plasma and bronchoalveolar lavage samples in acute lung allograft rejection: the potential role of cytokines as diagnostic markers

Affiliations
Review

Plasma and bronchoalveolar lavage samples in acute lung allograft rejection: the potential role of cytokines as diagnostic markers

Nicole E Speck et al. Respir Res. .

Abstract

The role of differential cytology patterns in peripheral blood and bronchoalveolar lavage samples is increasingly investigated as a potential adjunct to diagnose acute and chronic allograft dysfunction after lung transplantation. While these profiles might facilitate the diagnosis of acute cellular rejection, low sensitivity and specificity of these patterns limit direct translation in a clinical setting. In this context, the identification of other biomarkers is needed. This review article gives an overview of cytokine profiles of plasma and bronchoalveolar lavage samples during acute cellular rejection. The value of these cytokines in supporting the diagnosis of acute cellular rejection is discussed. Current findings on the topic are highlighted and experimental settings for future research projects are identified.

Keywords: Blood; Bronchoalveolar lavage; Cytokine; Diagnosis; Graft rejection; Lung transplantation; Plasma.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Proposal of an integrative algorithm. This descriptive algorithm is designed to estimate probabilities for ACR or other causes of ALAD in lung transplant recipients presenting with clinical findings or a drop in lung function (FEV1 > 10%). The integration of microbiology data, differential cytology [11] and cytokine expression levels from peripheral blood and BAL samples might assist in decision-making to increase or decrease the likelihood for ACR in the context of the clinical presentation. In the absence of standardized BAL techniques and detection methods, BAL cytokine expression levels and cut-offs have to interpreted wth caution and should be confirmed in larger studies. Since results from studies with very different designs have been included, direct translation in a clinical setting is not feasible and the use of this algorithm does not obviate the need for biopsy to confirm or exclude histology-proven ACR. * Numbers vary between different studies. ** Absence of microbiological evidence for infection

References

    1. Yusen RD, Edwards LB, Dipchand AI, Goldfarb SB, Kucheryavaya AY, Levvey BJ, Lund LH, Meiser B, Rossano JW, Stehlik J. The registry of the International Society for Heart and Lung Transplantation: thirty-third adult lung and heart-lung transplant report-2016; focus theme: primary diagnostic indications for transplant. J Heart Lung Transplant. 2016;35:1170–1184. doi: 10.1016/j.healun.2016.09.001. - DOI - PubMed
    1. Greenland JR, Jones KD, Hays SR, Golden JA, Urisman A, Jewell NP, Caughey GH, Trivedi NN. Association of large-airway lymphocytic bronchitis with bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 2013;187:417–423. doi: 10.1164/rccm.201206-1025OC. - DOI - PMC - PubMed
    1. Swanson SJ, Mentzer SJ, Reilly JJ, Bueno R, Lukanich JM, Jaklitsch MT, Kobzik L, Ingenito EP, Fuhlbrigge A, Donovan C, et al. Surveillance transbronchial lung biopsies: implication for survival after lung transplantation. J Thor Cardiovasc Surg. 2000;119:27–37. doi: 10.1016/S0022-5223(00)70214-5. - DOI - PubMed
    1. Khalifah AP, Hachem RR, Chakinala MM, Yusen RD, Aloush A, Patterson GA, Mohanakumar T, Trulock EP, Walter MJ. Minimal acute rejection after lung transplantation: a risk for bronchiolitis obliterans syndrome. Am J Transplant. 2005;5:2022–2030. doi: 10.1111/j.1600-6143.2005.00953.x. - DOI - PubMed
    1. Bhorade SM, Husain AN, Liao C, Li LC, Ahya VN, Baz MA, Valentine VG, Love RB, Seethamraju H, Alex CG, et al. Interobserver variability in grading transbronchial lung biopsy specimens after lung transplantation. Chest. 2013;143:1717–1724. doi: 10.1378/chest.12-2107. - DOI - PubMed