Statistical Geometrical Features for Microaneurysm Detection
- PMID: 28785874
- PMCID: PMC5873475
- DOI: 10.1007/s10278-017-0008-0
Statistical Geometrical Features for Microaneurysm Detection
Abstract
Automated microaneurysm (MA) detection is still an open challenge due to its small size and similarity with blood vessels. In this paper, we present a novel method which is simple, efficient, and real-time for segmenting and detecting MA in color fundus images (CFI). To do this, a novel set of features based on statistics of geometrical properties of connected regions, that can easily discriminate lesion and non-lesion pixels are used. For large-scale evaluation proposed method is validated on DIARETDB1, ROC, STARE, and MESSIDOR dataset. It proves robust with respect to different image characteristics and camera settings. The best performance was achieved on per-image evaluation on DIARETDB1 dataset with sensitivity of 88.09 at 92.65% specificity which is quite encouraging for clinical use.
Keywords: Diabetic retinopathy; Digital fundus images; Mass screening; Microaneurysms; Object rule-based classification; Red lesion.
Figures





Similar articles
-
Microaneurysms detection in color fundus images using machine learning based on directional local contrast.Biomed Eng Online. 2020 Apr 15;19(1):21. doi: 10.1186/s12938-020-00766-3. Biomed Eng Online. 2020. PMID: 32295576 Free PMC article.
-
Mathematical morphology for microaneurysm detection in fundus images.Eur J Ophthalmol. 2020 Sep;30(5):1135-1142. doi: 10.1177/1120672119843021. Epub 2019 Apr 25. Eur J Ophthalmol. 2020. PMID: 31018679
-
Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms.BMC Ophthalmol. 2018 Nov 6;18(1):288. doi: 10.1186/s12886-018-0954-4. BMC Ophthalmol. 2018. PMID: 30400869 Free PMC article.
-
Retinopathy Analysis Based on Deep Convolution Neural Network.Adv Exp Med Biol. 2020;1213:107-120. doi: 10.1007/978-3-030-33128-3_7. Adv Exp Med Biol. 2020. PMID: 32030666 Review.
-
A review on computer-aided recent developments for automatic detection of diabetic retinopathy.J Med Eng Technol. 2019 Feb;43(2):87-99. doi: 10.1080/03091902.2019.1576790. Epub 2019 Jun 14. J Med Eng Technol. 2019. PMID: 31198073 Review.
Cited by
-
Multi-label classification of fundus images based on graph convolutional network.BMC Med Inform Decis Mak. 2021 Jul 30;21(Suppl 2):82. doi: 10.1186/s12911-021-01424-x. BMC Med Inform Decis Mak. 2021. PMID: 34330270 Free PMC article.
-
GMS-JIGNet: guided multi-scale jigsaw puzzles for self-supervised artificial spot segmentation in fundus photography.Sci Rep. 2025 Jul 16;15(1):25753. doi: 10.1038/s41598-025-07077-4. Sci Rep. 2025. PMID: 40670428 Free PMC article.
References
-
- Abramoff MD: Retinopathy online challenge roc @ONLINE. 2017
-
- Baudoin CE, Lay BJ, Klein JC. Automatic detection of microaneurysms in diabetic fluorescein angiography. Revue d’é,pidémiologie et de santé publique. 1983;32(3–4):254–261. - PubMed
-
- Bhalerao A, Patanaik A, Anand S, Saravanan P: Robust detection of microaneurysms for sight threatening retinopathy screening. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing ICVGIP’08. IEEE, 2008, pp 520–527.
-
- Chen YQ, Nixon MS, Thomas DW. Statistical geometrical features for texture classification. Pattern Recogn. 1995;28(4):537–552. doi: 10.1016/0031-3203(94)00116-4. - DOI
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous