Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2017 Aug 8;318(6):548-556.
doi: 10.1001/jama.2017.9973.

Effect of Levosimendan on Low Cardiac Output Syndrome in Patients With Low Ejection Fraction Undergoing Coronary Artery Bypass Grafting With Cardiopulmonary Bypass: The LICORN Randomized Clinical Trial

Collaborators, Affiliations
Randomized Controlled Trial

Effect of Levosimendan on Low Cardiac Output Syndrome in Patients With Low Ejection Fraction Undergoing Coronary Artery Bypass Grafting With Cardiopulmonary Bypass: The LICORN Randomized Clinical Trial

Bernard Cholley et al. JAMA. .

Abstract

Importance: Low cardiac output syndrome after cardiac surgery is associated with high morbidity and mortality in patients with impaired left ventricular function.

Objective: To assess the ability of preoperative levosimendan to prevent postoperative low cardiac output syndrome.

Design, setting, and participants: Randomized, double-blind, placebo-controlled trial conducted in 13 French cardiac surgical centers. Patients with a left ventricular ejection fraction less than or equal to 40% and scheduled for isolated or combined coronary artery bypass grafting with cardiopulmonary bypass were enrolled from June 2013 until May 2015 and followed during 6 months (last follow-up, November 30, 2015).

Interventions: Patients were assigned to a 24-hour infusion of levosimendan 0.1 µg/kg/min (n = 167) or placebo (n = 168) initiated after anesthetic induction.

Main outcomes and measures: Composite end point reflecting low cardiac output syndrome with need for a catecholamine infusion 48 hours after study drug initiation, need for a left ventricular mechanical assist device or failure to wean from it at 96 hours after study drug initiation when the device was inserted preoperatively, or need for renal replacement therapy at any time postoperatively. It was hypothesized that levosimendan would reduce the incidence of this composite end point by 15% in comparison with placebo.

Results: Among 336 randomized patients (mean age, 68 years; 16% women), 333 completed the trial. The primary end point occurred in 87 patients (52%) in the levosimendan group and 101 patients (61%) in the placebo group (absolute risk difference taking into account center effect, -7% [95% CI, -17% to 3%]; P = .15). Predefined subgroup analyses found no interaction with ejection fraction less than 30%, type of surgery, and preoperative use of β-blockers, intra-aortic balloon pump, or catecholamines. The prevalence of hypotension (57% vs 48%), atrial fibrillation (50% vs 40%), and other adverse events did not significantly differ between levosimendan and placebo.

Conclusions and relevance: Among patients with low ejection fraction who were undergoing coronary artery bypass grafting with cardiopulmonary bypass, levosimendan compared with placebo did not result in a significant difference in the composite end point of prolonged catecholamine infusion, use of left ventricular mechanical assist device, or renal replacement therapy. These findings do not support the use of levosimendan for this indication.

Trial registration: EudraCT Number: 2012-000232-25; clinicaltrials.gov Identifier: NCT02184819.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Cholley reports receiving an honorarium for an invited lecture for Orion Pharma. Dr Menasché reports serving on the advisory boards of Edwards Lifesciences and Gecko Biomedical. Dr Rozec reports receiving a grant from Baxter and receiving personal fees from Baxter and Xenios. No other disclosures were reported.

Figures

Figure 1.
Figure 1.. Flow of Participants Through the Study
CABG indicates coronary artery bypass graft; CPB, cardiopulmonary bypass; ITT, intention to treat; and VF, ventricular fibrillation. The number of patients screened for eligibility was not available. “Stone heart” is a lethal complication that corresponds to postbypass ischemically-induced myocardial contracture. aTreatment allocation was not transmitted as a result of a communication failure with the website.
Figure 2.
Figure 2.. Forest Plot of the Absolute Risk Difference in the Primary End Point and Its Individual Components
CPB indicates cardiopulmonary bypass; ICU, intensive care unit. The size of the data markers reflects the precision of the estimation. The error bars indicate 95% CIs. Mechanical assist devices consisted of 22 intra-aortic balloon pumps in each group and 8 venoarterial extracorporeal life supports (5 in the levosimendan group and 3 in the placebo group). The decision for renal replacement therapy was at the discretion of the physicians in charge. aTwo patients in the placebo group who refused participation after randomization could not be assessed for the primary end point and were excluded from the intention-to-treat analysis.
Figure 3.
Figure 3.. Forest Plot of the Absolute Risk Difference in the Primary End Point According to Predefined Subgroups
CABG indicates coronary artery bypass graft; LVEF, left ventricular ejection fraction. The size of the data markers reflects the precision of the estimation. The error bars indicate 95% CIs. P values for subgroup comparisons correspond to test for interaction. aTwo patients in the placebo group who refused participation after randomization could not be assessed for the primary end point and were excluded from the intention-to-treat analysis.

References

    1. Algarni KD, Maganti M, Yau TM. Predictors of low cardiac output syndrome after isolated coronary artery bypass surgery: trends over 20 years. Ann Thorac Surg. 2011;92(5):1678-1684. - PubMed
    1. Landoni G, Bove T, Crivellari M, et al. . Acute renal failure after isolated CABG surgery: six years of experience. Minerva Anestesiol. 2007;73(11):559-565. - PubMed
    1. Fellahi JL, Parienti JJ, Hanouz JL, Plaud B, Riou B, Ouattara A. Perioperative use of dobutamine in cardiac surgery and adverse cardiac outcome: propensity-adjusted analyses. Anesthesiology. 2008;108(6):979-987. - PubMed
    1. Nielsen DV, Hansen MK, Johnsen SP, Hansen M, Hindsholm K, Jakobsen CJ. Health outcomes with and without use of inotropic therapy in cardiac surgery: results of a propensity score-matched analysis. Anesthesiology. 2014;120(5):1098-1108. - PubMed
    1. De Hert SG, Lorsomradee S, Cromheecke S, Van der Linden PJ. The effects of levosimendan in cardiac surgery patients with poor left ventricular function [erratum in Anesth Analg.2007;104(6):1544]. Anesth Analg. 2007;104(4):766-773. - PubMed

Publication types

MeSH terms

Associated data