Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 1;6(10):5779-5792.
doi: 10.1039/c5sc01801c. Epub 2015 Jul 14.

Copper coordination polymers from cavitand ligands: hierarchical spaces from cage and capsule motifs, and other topologies

Affiliations

Copper coordination polymers from cavitand ligands: hierarchical spaces from cage and capsule motifs, and other topologies

Flora L Thorp-Greenwood et al. Chem Sci. .

Abstract

The cyclotriveratrylene-type ligands (±)-tris(iso-nicotinoyl)cyclotriguaiacylene L1 (±)-tris(4-pyridylmethyl)cyclotriguaiacylene L2 and (±)-tris{4-(4-pyridyl)benzyl}cyclotriguaiacylene L3 all feature 4-pyridyl donor groups and all form coordination polymers with CuI and/or CuII cations that show a remarkable range of framework topologies and structures. Complex [CuI4CuII1.5(L1)3(CN)6]·CN·n(DMF) 1 features a novel 3,4-connected framework of cyano-linked hexagonal metallo-cages. In complexes [Cu3(L2)4(H2O)3]·6(OTf)·n(DMSO) 2 and [Cu2(L3)2Br2(H2O)(DMSO)]·2Br·n(DMSO) 3 capsule-like metallo-cryptophane motifs are formed which linked through their metal vertices into a hexagonal 2D network of (43.123)(42.122) topology or a coordination chain. Complex [Cu2(L1)2(OTf)2(NMP)2(H2O)2]·2(OTf)·2NMP 4 has an interpenetrating 2D 3,4-connected framework of (4.62.8)(62.8)(4.62.82) topology with tubular channels. Complex [Cu(L1)(NCMe)]·BF4·2(CH3CN)·H2O 5 features a 2D network of 63 topology while the CuII analogue [Cu2(L1)2(NMP)(H2O)]·4BF4·12NMP·1.5H2O 6 has an interpenetrating (10,3)-b type structure and complex [Cu2(L2)2Br3(DMSO)]·Br·n(DMSO) 7 has a 2D network of 4.82 topology. Strategies for formation of coordination polymers with hierarchical spaces emerge in this work and complex 2 is shown to absorb fullerene-C60 through soaking the crystals in a toluene solution.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Coordination geometries of Cu sites and ligand bridging behaviour from the crystal structure of complex 1. Symmetry operators: (i) y, –x + y, 1 – z; (ii) 2/3 – y, 1/3 + xy, 1/3 + z; (iii) xy, x, 1 – z; (iv) –x + y, 1 – x, z; (v) 1 – y, 1 + xy, z; (vi) 1/3 – x + y, 2/3 – x, z – 1/3.
Fig. 2
Fig. 2. Crystal structure of complex 1 illustrating the formation of hexagonal prism motifs within the 3D coordination polymer framework, (a) top view down the c axis of three prisms connected by a central Cu3 ion; (b) side view of two prisms from two different layers connected through Cu–CN bridges; (c) the copper cyanide expanded hexagonal net; (d) unit cell diagram viewed down the a axis.
Fig. 3
Fig. 3. Simplified connectivity diagrams for complex 1 showing (a) one layer of prisms connected by Cu3 centres; (b) two layers with upper layer in heavier lines illustrating the close-packing relationship between the prisms. Linkages between prisms are shown in red, green spheres are Cu3 positions, blue spheres represent L1 ligands and yellow spheres centres of Cu1–CN–Cu2 linkages as shown upper right of Figure.
Fig. 4
Fig. 4. From the crystal structure of [Cu3(L2)4(H2O)3]·6(OTf) 2. (a) The metallo-cryptophanes of the asymmetric unit; (b) chiral 2D network of vertice-linked metallo-cryptophanes that forms in bc plane; (c) stacking of two layers of enantiomorphic 2D metallo-cryptophane layers shown in space-filling mode and in different colours for clarity.
Fig. 5
Fig. 5. (a) Crystals of complex 2 as synthesised; (b) after soaking in toluene solution of fullerene-C60, crystal clusters have been broken up.
Fig. 6
Fig. 6. From the crystal structure of complex [Cu2(L3)2Br2(H2O)(DMSO)]·2Br·n(DMSO) 3. (a) Single metallo-cryptophane moiety of the [Cu2(L3)2Br2(H2O)(DMSO)]2+ coordination chain with complete CuII coordination spheres shown and guest DMSO molecules; (ii) side-view of metallo-cryptophane with partial Cu1 coordination spheres shown for clarity. Symmetry element: (i) 1/2 + x, 3/2 – y, 1/2 + z.
Fig. 7
Fig. 7. From the crystal structure of complex [Cu2(L3)2Br2(H2O)(DMSO)]·2Br·n(DMSO) 3. (a) View of two [Cu2(L3)2Br2(H2O)(DMSO)]2+ coordination chains aligned in a p[olar fashion; (b) packing of coordination chains viewed down the a axis, solvent, hydrogen atoms and disordered counter-anions excluded for clarity.
Fig. 8
Fig. 8. From the crystal structure of [Cu2(L1)2(OTf)2(NMP)2(H2O)2]·2(OTf)·2NMP 4. (a) Formation of a ladder motif through the 4-connecting Cu2 centres; (b) 2D coordination polymer of linked tubes; (c) connectivity diagram with Cu centres in green and L1 ligand centres larger spheres in blue.
Fig. 9
Fig. 9. Extended structure of complex 4 showing (a) 2D → 3D network interpenetration with terminal ligands excluded for clarity; (b) detail of three networks illustrating the Cu1–NMP∩L1 host–guest interactions that occur between the networks, guest NMP ligands are shown in space filling mode.
Fig. 10
Fig. 10. Crystal structure of [Cu(L1)(NCMe)]·BF4·1.5(CH3CN)·2H2O 5. (a) 2D Coordination polymer network with 63 topology; (b) packing diagram viewed down the a axis. Carbon atoms of CH3CN shown in dark green and H atoms excluded.
Fig. 11
Fig. 11. From the crystal structure of [Cu2(L1)2(NMP)(H2O)]·4BF4·12NMP·1.5H2O 6. (a) Coordination environment, two types of L1 ligands and host–guest associations between L1 and NMP. For the sake of clarity, only the pyridyl groups of some L1 ligands within the Cu coordination sphere are shown, carbon atoms of NMP in dark green; (b) single [Cu2(L1)2]4+ coordination polymer with terminal ligands excluded; (c) connectivity diagram showing ths or (10,3)-b topology with one chair-conformation 10-ring in red, L1 connecting centre is taken as at centre of Cu3 plane as this allows for easier identification of network type; (d) two-fold interpenetration of inverted ths nets. Symmetry operations: (i) x, 1/2 – y, 1/2 + z; (ii) x – 1, 3/2 – y, z – 1/2; (iii) x – 1, y, z – 1.
Fig. 12
Fig. 12. From the crystal structure of [Cu2(L2)2Br3(DMSO)]·Br·3.5DMSO 7, only one disorder position is shown for disordered L2 moieties. (a) Complete CuII coordination spheres; (b) 2D [Cu2(L2)2Br3(DMSO)]+ coordination polymer with terminal ligands excluded; (c) connectivity diagram (on left, green spheres = CuII; blue spheres = L2 centroid) and idealized 4.82 topology shown on right, in both cases one 8-ring and four 4-rings are highlighted in red.

References

    1. Reviews Perry J. J., Perman J. A., Zaworotko M. J., Chem. Soc. Rev., 2009, 48 , 3018 Noro S., Kitagawa S., Akutagawa T., Nakamura T., Prog. Polym. Sci., 2009, 34 , 240, Robin A. Y., Fromm K. M., Coord. Chem. Rev., 2006, 250 , 2127, Ockwig N. W., Delgado-Friedrichs O., O'Keeffe M., Yaghi O. M., Acc. Chem. Res., 2005, 38 , 176, Janiak C., Dalton Trans., 2003. , 2781, James S. L., Chem. Soc. Rev., 2003, 32 , 276, Robson R., Dalton Trans., 2000. , 3735 .
    1. Ekaterina V., Mueller P., Buchwald S. L., Matsuzaki S., Arai T., Ikemoto K., Inokuma Y., Fujita M., Ikemoto K., Inokuma Y., Rissanen K., Fujita M., Inokuma Y., Yoshioka S., Ariyoshi J., Arai T., Hitora Y., Takada K., Matsunaga S., Rissanen K., Fujita M. Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. Nature. 2014;2014;2014;2013;53136136495:3125. 17899, 6892, 461.
    1. Liu Z., Frasconi M., Lei J., Brown Z. J., Zhu Z., Cao D., Iehl J., Liu G., Fahrenbach A. C., Botros Y. Y., Farha O. K., Hupp J. T., Mirkin C. A., Stoddart J. F., Gassensmith J. J., Furukawa H., Smaldone R. A., Forgan R. S., Botros Y. Y., Yaghi O. M., Stoddart J. F., Smaldone R. A., Forgan R. S., Furukawa H., Gassensmith J. J., Slawin A. M. Z., Yaghi O. M., Stoddart J. F. Nat. Commun. J. Am. Chem. Soc. Angew. Chem., Int. Ed. 2013;2011;2010;413349:1855. 15312, 8630. - PMC - PubMed
    1. Fowler D. A., Mossine A. V., Beavers C. M., Teat S. J., Dalgarno S. J., Atwood J. A., Thuery P., Webb H. R., Hardie M. J., Raston C. L. J. Am. Chem. Soc. Cryst. Growth Des. Chem.–Eur. J. 2011;2009;2001;13397:11069. 1208, 3616. - PubMed
    1. For example Tsymbal L. V., Lampeka Y. D., Boyko V. I., Kalchenko V. I., Shishkina S. V., Shishkin O. V., CrystEngComm, 2014, 16 , 3707 Cholewa P. P., Beavers C. M., Teat S. J., Dalgarno S. J., Cryst. Growth Des., 2013, 13 , 5165, Bew S. P., Burrows A. D., Düren T., Mahon M. F., Moghadam P. Z., Sebestyen V. M., Thurston S., Chem. Commun., 2012, 48 , 4824, Liao W., Liu C., Wang X., Zhu G., Zhao X., Zhang H., CrystEngComm, 2009, 11 , 2282, Olguin J., Castillo A., Gomez-Vidales V., Hernandez-Ortega S., Toscano R. A., Munoz E., Castillo I., Supramol. Chem., 2009, 21 , 502, Thuery P., Cryst. Growth Des., 2008, 8 , 4132, Tadokoro M., Mizugaki S., Kozaki M., Okada K., Chem. Commun., 2005. , 1140, Dalgarno S. J., Hardie M. J., Raston C. L., Cryst. Growth Des., 2004, 4 , 227, Dalgarno S. J., Raston C. L., Chem. Commun., 2002. , 2216 .

LinkOut - more resources