Intracellular lipid droplets support osteoblast function
- PMID: 28792783
- PMCID: PMC5638385
- DOI: 10.1080/21623945.2017.1356505
Intracellular lipid droplets support osteoblast function
Abstract
Bone formation is an osteoblast-specific process characterized by high energy demands due to the secretion of matrix proteins and mineralization vesicles. While glucose has been reported as the principle fuel source for osteoblasts, recent evidence supports the tenet that osteoblasts can utilize fatty acids as well. Although the ability to accumulate lipid droplets has been demonstrated in many cell types, there has been little evidence that osteoblasts possess this characteristic. The current study provides evidence that osteoblastogenesis is associated with lipid droplet accumulation capable of supplying energy substrates (fatty acids) required for the differentiation process. Understanding the role of fatty acids in metabolic programming of the osteoblast may lead to novel approaches to increase bone formation and ultimately bone mass.
Keywords: bone; fatty acids; lipolysis; lipophagy; marrow adipocytes.
Figures




Similar articles
-
Mesenchymal Stromal Cells Differentiating to Adipocytes Accumulate Autophagic Vesicles Instead of Functional Lipid Droplets.J Cell Physiol. 2016 Apr;231(4):863-75. doi: 10.1002/jcp.25177. Epub 2015 Sep 22. J Cell Physiol. 2016. PMID: 26332160
-
Lipolysis supports bone formation by providing osteoblasts with endogenous fatty acid substrates to maintain bioenergetic status.Bone Res. 2023 Nov 24;11(1):62. doi: 10.1038/s41413-023-00297-2. Bone Res. 2023. PMID: 38001111 Free PMC article.
-
The Impact of Lipid Types and Liposomal Formulations on Osteoblast Adiposity and Mineralization.Molecules. 2018 Jan 2;23(1):95. doi: 10.3390/molecules23010095. Molecules. 2018. PMID: 29301300 Free PMC article.
-
Osteoblastic cells: differentiation and trans-differentiation.Arch Biochem Biophys. 2008 May 15;473(2):183-7. doi: 10.1016/j.abb.2008.03.028. Epub 2008 Mar 29. Arch Biochem Biophys. 2008. PMID: 18406334 Review.
-
Regulation and Functions of Autophagic Lipolysis.Trends Endocrinol Metab. 2016 Oct;27(10):696-705. doi: 10.1016/j.tem.2016.06.003. Epub 2016 Jun 27. Trends Endocrinol Metab. 2016. PMID: 27365163 Free PMC article. Review.
Cited by
-
Bioenergetic Metabolism In Osteoblast Differentiation.Curr Osteoporos Rep. 2022 Feb;20(1):53-64. doi: 10.1007/s11914-022-00721-2. Epub 2022 Feb 3. Curr Osteoporos Rep. 2022. PMID: 35112289 Free PMC article. Review.
-
Energy metabolism: A newly emerging target of BMP signaling in bone homeostasis.Bone. 2020 Sep;138:115467. doi: 10.1016/j.bone.2020.115467. Epub 2020 Jun 5. Bone. 2020. PMID: 32512164 Free PMC article. Review.
-
Energy Metabolism of Bone.Toxicol Pathol. 2017 Oct;45(7):887-893. doi: 10.1177/0192623317737065. Epub 2017 Nov 2. Toxicol Pathol. 2017. PMID: 29096593 Free PMC article. Review.
-
Osteometabolism: Metabolic Alterations in Bone Pathologies.Cells. 2022 Dec 6;11(23):3943. doi: 10.3390/cells11233943. Cells. 2022. PMID: 36497201 Free PMC article. Review.
-
Energy Metabolism and Lipidome Are Highly Regulated during Osteogenic Differentiation of Dental Follicle Cells.Stem Cells Int. 2022 Jul 16;2022:3674931. doi: 10.1155/2022/3674931. eCollection 2022. Stem Cells Int. 2022. PMID: 35903407 Free PMC article.
References
-
- Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93(2):799-08. https://doi.org/10.1172/JCI117034; PMID:8113412 - DOI - PMC - PubMed
-
- Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: An estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729-39. https://doi.org/10.1002/jbmr.412; PMID:21520276 - DOI - PubMed
-
- Borle AB, Nichols N, Nichols G Jr. Metabolic studies of bone in vitro. II. The metabolic patterns of accretion and resorption. J Biol Chem. 1960;235:2351211-1214. PMID:13802862 - PubMed
-
- Borle AB, Nichols N, Nichols G Jr. Metabolic studies of bone in vitro. I. Normal bone. J Biol Chem. 1960;235:2351206-1210. PMID:13802861 - PubMed
-
- Adamek G, Felix R, Guenther HL, Fleisch H. Fatty acid oxidation in bone tissue and bone cells in culture. Characterization and hormonal influences. Biochem J. 11-15-1987;248(1):129-37. https://doi.org/10.1042/bj2480129; PMID:3325035 - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources