Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 30;9(34):28802-28809.
doi: 10.1021/acsami.7b07799. Epub 2017 Aug 18.

Cross Stacking of Nanopatterned PEDOT Films for Use as Soft Electrodes

Affiliations

Cross Stacking of Nanopatterned PEDOT Films for Use as Soft Electrodes

Chihyun Park et al. ACS Appl Mater Interfaces. .

Abstract

Cross stacking of nanopatterned conductive polymer film was explored using a sacrificial soft template made of nanopatterned polystyrene (PS) film as a guide for nanopatterned conductive polymer film. For use as a conductive film, the PS pattern was filled with poly(3,4-ethylenedioxythiophene) (PEDOT), and then completely removed, to generate single-patterned PEDOT (SPDOT) film having a conductivity of 1079 S/cm, which was comparable to the pristine unpatterned PEDOT (UPDOT) film on a glass slide. SPDOT layers were stacked across each other to form double-layered (DPDOT) and multiple-layered patterned PEDOT film on a glass slide or polymeric substrate. The patterned PEDOT film showed enhanced optical and electrochemical activity; specifically as compared to the UPDOT film on a glass slide, the DPDOT film showed an increase in reflectance and an enhanced electrochemically active surface by 23.4% and 32.8%, respectively. The patterned PEDOT film on a polymer substrate showed high bendability up to being completely folded and maintained its conductivity for over 10 000 cycles of bending. The patterned PEDOT layers were applied to dye-sensitized solar cells (DSSCs) as a transparent conductive oxide (TCO)-free counter electrode. An N719-based DSSC with a DPDOT film recorded a photoconversion efficiency of 7.54%, which is one of the highest values among the TCO-free DSSCs based on a PEDOT counter electrode.

Keywords: DSSC; PEDOT; TCO-free; light harvesting; nanopatterning.

PubMed Disclaimer

LinkOut - more resources