Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 11;17(1):400.
doi: 10.1186/s12906-017-1908-8.

Anthelminthic properties of Methylene chloride-methanol (1:1) extracts of two Cameroonians medicinal plants on Heligmosomoides bakeri (Nematoda: Heligmosomatidea)

Affiliations

Anthelminthic properties of Methylene chloride-methanol (1:1) extracts of two Cameroonians medicinal plants on Heligmosomoides bakeri (Nematoda: Heligmosomatidea)

Sergine Errole Ngouateu Teufack et al. BMC Complement Altern Med. .

Abstract

Background: The resistance of some medico-veterinary parasite strains as well as the unavailability and toxicity of synthetic anthelminthics on humans, animals and the impacts of their residues in the environment have pushed scientists to turn to plants with anthelminthic properties. Hence, the aim of this work was to contribute to the fight against helminths of medical and veterinary importance in general, and also to clear the environment of their free living stages.

Methods: Fresh eggs of Heligmosomoides bakeri were obtained from the faeces of experimentally infected mice. L1 and L2 larval stages were obtained after 48 and 72 h of coproculture respectively. Methylene Chloride-Methanol (1:1) extracts of Annona senegalensis and Nauclea latifolia were diluted in DMSO or Tween 80 to prepare the following concentrations: 625, 1250, 2500, 3750 and 5000 μg/ml. The effects of extract solutions were evaluated on the embryonation of eggs, egg hatching and on L1 and L2 survival after 48, 10 and 24 h of incubation. Negative controls were 1.5% DMSO, 4% Tween 80 and a mixture of these solvents. The TLC was carried out and the profiles of secondary metabolites were made.

Results: Negative controls had no effect on the embryonation, eggs hatching and on larval mortality. However, it was found that, the extracts affected the free living stages of H. bakeri in a concentration-dependant manner. At the highest concentration (5000 μg/ml), the rate of inhibition of embryonation obtained were 20.80%, 38.15% and 84.83% for Methylene Chloride-Methanol of Annona senegalensis (MCM As), Nauclea latifolia (MCM Nl) extracts and mixture of Annona senegalensis and Nauclea latifolia (MCM As-Nl) extract respectively. For egg hatch, the inhibition rate was 16.10%, 46.24% and 87.07% for the above three extracts respectively at the same concentration of 5000 μg/ml. On L1 and L2 larval stages after 24 h of exposure to extracts, the mortality rates of 100%, 54.76% and 96.77% against 98%, 51.44% and 100% were obtained for MCM As, MCM Nl and MCM As-Nl respectively at the highest concentration. The Methylene Chloride-Methanol of A.senegalensis, N. latifolia extracts showed the presence of alkaloids except in N. latifolia extract, flavonoids, sterols, triterpens, tanins, polyphenols, anthraquinons, saponins and terpenoids.

Conclusion: These findings suggest that, the mixture of the two plant extracts showed an additive (synergetic effect) ovicidal effect and a slight larval mortality on L1 as compared to the effect of MCM As extract alone. These effects were due to the presence ao secondary metabolites identifies in the plant extracts. Thus, they may be used as possible «disinfectants» for soil transmitted nematodes.

Keywords: Additive effect; Annona senegalensis; Heligmosomoides bakeri; Nauclea latifolia.

PubMed Disclaimer

Conflict of interest statement

Ethics approval

Experimental protocols used in this study were approved by the Research Unit of Biology and Applied Ecology committee, Department of Animal Biology, University of Dschang, Cameroon.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Experimental design.. Legend: MCM As = Methylene Chloride-Methanol extract of Annona senegalensis. MCM Nl = Methylene Chloride-Methanol extract of Nauclea latifolia MCM As-Nl = Methylene Chloride-Methanol mixture of extract of Annona senegalensis and Nauclea latifolia. DMSO: Dimethylsulfoxid
Fig. 2
Fig. 2
Thin Layer Chromatography (TLC) fingerprinting profile of Methylene Chloride-Methanol (1:1) extracts of barks of Nauclea latifolia (a) and Annona senegalensis (b)

Similar articles

Cited by

References

    1. Wabo Pone J, Yondo J, Fossi Tankoua O, Komtangi MC, Bilong Bilong CF. Mpoame Mbida the in vitro effect of Chenopodium ambrosioides (Chenopodiaceae) extract on the parasitic nematode Heligmosomoides bakeri (Nematoda: Heligmosomatidae) J Pharm Phyto. 2011;3:1–5. - PMC - PubMed
    1. Etung kollins N, Wabo Pone J, Payne VK, Yondo J, Komtangi MC, Mpoame Mbida, Bilong Bilong, C. In vitro Comparative effect of aqueous (cold and hot water) and ethanolic extracts of the seeds of aframomum danielli (zingiberaceae) on three life cycle stages of the parasitic nematode Heligmosomoides Bakeri (Nematoda; Heligmosomatidae), parasite of the laboratory mice (Mus Musculus). Med Aromat Plants. 2012;1:111. doi: 10.4172/2167-0412.1000111.
    1. Nandhini A, Sumathi C. An overview of herbals used in helminthosis. World J Pharm Res. 2014;3(10):350–362.
    1. Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Elrich Sachs S, Sachs JD, et al. Control of neglected diseases. New England J Med. 2007;357:1018–1027. doi: 10.1056/NEJMra064142. - DOI - PubMed
    1. WHO. Link between water and rehabilitation, health and hygiene: figure and accomplished facts. Geneva. 2004. http://www.who.int/water_sanitation_health/publications/facts2004/en/.

LinkOut - more resources