Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Sep 19;89(18):9814-9821.
doi: 10.1021/acs.analchem.7b01765. Epub 2017 Aug 28.

Infrared Spectroscopy Coupled with a Dispersion Model for Quantifying the Real-Time Dynamics of Kanamycin Resistance in Artificial Microbiota

Affiliations

Infrared Spectroscopy Coupled with a Dispersion Model for Quantifying the Real-Time Dynamics of Kanamycin Resistance in Artificial Microbiota

Naifu Jin et al. Anal Chem. .

Abstract

Overusage of antibiotics leads to the widespread induction of antibiotic-resistance genes (ARGs). Developing an approach to allow real-time monitoring and fast prediction of ARGs dynamics in clinical or environmental samples has become an urgent matter. Vibrational spectroscopy is potentially an ideal technique toward the characterization of the microbial composition of microbiota as it is nondestructive, high-throughput, and label-free. Herein, we employed attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and developed a spectrochemical tool to quantify the static and dynamic composition of kanamycin resistance in artificial microbiota to evaluate microbial antibiotic resistance. Second-order differentiation was introduced in identifying the spectral biomarkers, and principal component analysis followed by linear discriminant analysis (PCA-LDA) was used for the multivariate analysis of the entire spectral features employed. The calculated results of the mathematical dispersion model coupled with PCA-LDA showed high similarity to the designed microbiota structure, with no significant difference (P > 0.05) in the static treatments. Moreover, our model successfully predicted the dynamics of kanamycin resistance within artificial microbiota under kanamycin pressures. This work lends new insights into the potential role of spectrochemical analyses in investigating the existence and trends of antibiotic resistance in microbiota.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources