Epigenetic regulation by the menin pathway
- PMID: 28811300
- PMCID: PMC5612327
- DOI: 10.1530/ERC-17-0298
Epigenetic regulation by the menin pathway
Abstract
There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the MEN1 gene, at least partly acts as a scaffold protein by interacting with multiple partners to regulate cellular homeostasis of various endocrine organs. Menin has multiple functions including regulation of several important signaling pathways by controlling gene transcription. Here, we focus on reviewing the recent progress in elucidating the key biochemical role of menin in epigenetic regulation of gene transcription and cell signaling, as well as posttranslational regulation of menin itself. In particular, we will review the progress in studying structural and functional interactions of menin with various histone modifiers and transcription factors such as MLL, PRMT5, SUV39H1 and other transcription factors including c-Myb and JunD. Moreover, the role of menin in regulating cell signaling pathways such as TGF-beta, Wnt and Hedgehog, as well as miRNA biogenesis and processing will be described. Further, the regulation of the MEN1 gene transcription, posttranslational modifications and stability of menin protein will be reviewed. These various modes of regulation by menin as well as regulation of menin by various biological factors broaden the view regarding how menin controls various biological processes in neuroendocrine organ homeostasis.
Keywords: MEN1; epigenetic regulation; menin; neuroendocrine tumor.
© 2017 Society for Endocrinology.
Conflict of interest statement
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this review.
References
-
- Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, Saggar S, Chandrasekharappa SC, Collins FS, Spiegel AM, et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell. 1999;96:143–152. - PubMed
-
- Agarwal SK, Kennedy PA, Scacheri PC, Novotny EA, Hickman AB, Cerrato A, Rice TS, Moore JB, Rao S, Ji Y, et al. Menin molecular interactions: insights into normal functions and tumorigenesis. Horm Metab Res. 2005;37:369–374. - PubMed
-
- Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC. Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics. 1998;47:187–199. - PubMed
-
- Anlauf M, Perren A, Meyer CL, Schmid S, Saremaslani P, Kruse ML, Weihe E, Komminoth P, Heitz PU, Kloppel G. Precursor lesions in patients with multiple endocrine neoplasia type 1-associated duodenal gastrinomas. Gastroenterology. 2005;128:1187–1198. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
